Cargando…

Current approaches toward chemical mixture studies at the National Institute of Environmental Health Sciences and the U.S. National Toxicology Program.

The National Institute of Environmental Health Sciences (NIEHS) has several new initiatives involving chemical mixtures and has recognized the need to develop new experimental approaches to enhance our efforts in this area. Responding to recent increases in nominations of complex occupational exposu...

Descripción completa

Detalles Bibliográficos
Autores principales: Bucher, J R, Lucier, G
Formato: Texto
Lenguaje:English
Publicado: 1998
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1533434/
https://www.ncbi.nlm.nih.gov/pubmed/9860884
Descripción
Sumario:The National Institute of Environmental Health Sciences (NIEHS) has several new initiatives involving chemical mixtures and has recognized the need to develop new experimental approaches to enhance our efforts in this area. Responding to recent increases in nominations of complex occupational exposures for toxicologic assessment by the U.S. National Toxicology Program, the NIEHS and the National Institute for Occupational Safety and Health have begun a program to characterize exposures through field studies, identify biomarkers of exposure in workers, and recreate relevant mixed exposures in a laboratory setting. A second initiative with the National Center for Environmental Health/Centers for Disease Control and Prevention will examine blood samples from the U.S. National Health and Nutrition Examination Survey population surveys for selected endocrine-disrupting agents and for common patterns of persistent xenobiotics, providing critical information for the design of animal studies to assess risks of relevant chemical mixtures to humans. New toxicology testing methods (lower cost, faster) will enhance our ability to study chemical mixtures (e.g., dioxin and dioxinlike chemicals, combination AIDS therapies). Ongoing method development efforts involve in vitro functional toxicology assays, screens for estrogenic activity, and carcinogenesis studies in transgenic mice. A major scientific initiative with mixtures involves studies of individual and mixtures of dioxin and dioxinlike chemicals to determine if toxic equivalence factors predict carcinogenic potency in traditional and transgenic bioassays. Complementing these studies is an increased emphasis on physiologically based pharmacokinetic modeling, an activity central to the proper interpretation of chemical mixture studies.