Cargando…
Optimized mixed Markov models for motif identification
BACKGROUND: Identifying functional elements, such as transcriptional factor binding sites, is a fundamental step in reconstructing gene regulatory networks and remains a challenging issue, largely due to limited availability of training samples. RESULTS: We introduce a novel and flexible model, the...
Autores principales: | Huang, Weichun, Umbach, David M, Ohler, Uwe, Li, Leping |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1534070/ https://www.ncbi.nlm.nih.gov/pubmed/16749929 http://dx.doi.org/10.1186/1471-2105-7-279 |
Ejemplares similares
-
IUTA: a tool for effectively detecting differential isoform usage from RNA-Seq data
por: Niu, Liang, et al.
Publicado: (2014) -
T-KDE: a method for genome-wide identification of constitutive protein binding sites from multiple ChIP-seq data sets
por: Li, Yuanyuan, et al.
Publicado: (2014) -
Gapped alignment of protein sequence motifs through Monte Carlo optimization of a hidden Markov model
por: Neuwald, Andrew F, et al.
Publicado: (2004) -
Clustering metagenomic sequences with interpolated Markov models
por: Kelley, David R, et al.
Publicado: (2010) -
Flexible hidden Markov models for behaviour-dependent habitat selection
por: Klappstein, N. J., et al.
Publicado: (2023)