Cargando…
Characterizing the stress/defense transcriptome of Arabidopsis
BACKGROUND: To understand the gene networks that underlie plant stress and defense responses, it is necessary to identify and characterize the genes that respond both initially and as the physiological response to the stress or pathogen develops. We used PCR-based suppression subtractive hybridizati...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC153460/ https://www.ncbi.nlm.nih.gov/pubmed/12620105 http://dx.doi.org/10.1186/gb-2003-4-3-r20 |
_version_ | 1782120704707133440 |
---|---|
author | Mahalingam, Ramamurthy Gomez-Buitrago, AnaMaria Eckardt, Nancy Shah, Nigam Guevara-Garcia, Angel Day, Philip Raina, Ramesh Fedoroff, Nina V |
author_facet | Mahalingam, Ramamurthy Gomez-Buitrago, AnaMaria Eckardt, Nancy Shah, Nigam Guevara-Garcia, Angel Day, Philip Raina, Ramesh Fedoroff, Nina V |
author_sort | Mahalingam, Ramamurthy |
collection | PubMed |
description | BACKGROUND: To understand the gene networks that underlie plant stress and defense responses, it is necessary to identify and characterize the genes that respond both initially and as the physiological response to the stress or pathogen develops. We used PCR-based suppression subtractive hybridization to identify Arabidopsis genes that are differentially expressed in response to ozone, bacterial and oomycete pathogens and the signaling molecules salicylic acid (SA) and jasmonic acid. RESULTS: We identified a total of 1,058 differentially expressed genes from eight stress cDNA libraries. Digital northern analysis revealed that 55% of the stress-inducible genes are rarely transcribed in unstressed plants and 17% of them were not previously represented in Arabidopsis expressed sequence tag databases. More than two-thirds of the genes in the stress cDNA collection have not been identified in previous studies as stress/defense response genes. Several stress-responsive cis-elements showed a statistically significant over-representation in the promoters of the genes in the stress cDNA collection. These include W- and G-boxes, the SA-inducible element, the abscisic acid response element and the TGA motif. CONCLUSIONS: The stress cDNA collection comprises a broad repertoire of stress-responsive genes encoding proteins that are involved in both the initial and subsequent stages of the physiological response to abiotic stress and pathogens. This set of stress-, pathogen- and hormone-modulated genes is an important resource for understanding the genetic interactions underlying stress signaling and responses and may contribute to the characterization of the stress transcriptome through the construction of standardized specialized arrays. |
format | Text |
id | pubmed-153460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2003 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-1534602003-04-18 Characterizing the stress/defense transcriptome of Arabidopsis Mahalingam, Ramamurthy Gomez-Buitrago, AnaMaria Eckardt, Nancy Shah, Nigam Guevara-Garcia, Angel Day, Philip Raina, Ramesh Fedoroff, Nina V Genome Biol Research BACKGROUND: To understand the gene networks that underlie plant stress and defense responses, it is necessary to identify and characterize the genes that respond both initially and as the physiological response to the stress or pathogen develops. We used PCR-based suppression subtractive hybridization to identify Arabidopsis genes that are differentially expressed in response to ozone, bacterial and oomycete pathogens and the signaling molecules salicylic acid (SA) and jasmonic acid. RESULTS: We identified a total of 1,058 differentially expressed genes from eight stress cDNA libraries. Digital northern analysis revealed that 55% of the stress-inducible genes are rarely transcribed in unstressed plants and 17% of them were not previously represented in Arabidopsis expressed sequence tag databases. More than two-thirds of the genes in the stress cDNA collection have not been identified in previous studies as stress/defense response genes. Several stress-responsive cis-elements showed a statistically significant over-representation in the promoters of the genes in the stress cDNA collection. These include W- and G-boxes, the SA-inducible element, the abscisic acid response element and the TGA motif. CONCLUSIONS: The stress cDNA collection comprises a broad repertoire of stress-responsive genes encoding proteins that are involved in both the initial and subsequent stages of the physiological response to abiotic stress and pathogens. This set of stress-, pathogen- and hormone-modulated genes is an important resource for understanding the genetic interactions underlying stress signaling and responses and may contribute to the characterization of the stress transcriptome through the construction of standardized specialized arrays. BioMed Central 2003 2003-02-18 /pmc/articles/PMC153460/ /pubmed/12620105 http://dx.doi.org/10.1186/gb-2003-4-3-r20 Text en Copyright © 2003 Mahalingam et al.; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. |
spellingShingle | Research Mahalingam, Ramamurthy Gomez-Buitrago, AnaMaria Eckardt, Nancy Shah, Nigam Guevara-Garcia, Angel Day, Philip Raina, Ramesh Fedoroff, Nina V Characterizing the stress/defense transcriptome of Arabidopsis |
title | Characterizing the stress/defense transcriptome of Arabidopsis |
title_full | Characterizing the stress/defense transcriptome of Arabidopsis |
title_fullStr | Characterizing the stress/defense transcriptome of Arabidopsis |
title_full_unstemmed | Characterizing the stress/defense transcriptome of Arabidopsis |
title_short | Characterizing the stress/defense transcriptome of Arabidopsis |
title_sort | characterizing the stress/defense transcriptome of arabidopsis |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC153460/ https://www.ncbi.nlm.nih.gov/pubmed/12620105 http://dx.doi.org/10.1186/gb-2003-4-3-r20 |
work_keys_str_mv | AT mahalingamramamurthy characterizingthestressdefensetranscriptomeofarabidopsis AT gomezbuitragoanamaria characterizingthestressdefensetranscriptomeofarabidopsis AT eckardtnancy characterizingthestressdefensetranscriptomeofarabidopsis AT shahnigam characterizingthestressdefensetranscriptomeofarabidopsis AT guevaragarciaangel characterizingthestressdefensetranscriptomeofarabidopsis AT dayphilip characterizingthestressdefensetranscriptomeofarabidopsis AT rainaramesh characterizingthestressdefensetranscriptomeofarabidopsis AT fedoroffninav characterizingthestressdefensetranscriptomeofarabidopsis |