Cargando…
Modeling gene expression measurement error: a quasi-likelihood approach
BACKGROUND: Using suitable error models for gene expression measurements is essential in the statistical analysis of microarray data. However, the true probabilistic model underlying gene expression intensity readings is generally not known. Instead, in currently used approaches some simple parametr...
Autor principal: | Strimmer, Korbinian |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC153502/ https://www.ncbi.nlm.nih.gov/pubmed/12659637 http://dx.doi.org/10.1186/1471-2105-4-10 |
Ejemplares similares
-
A unified approach to false discovery rate estimation
por: Strimmer, Korbinian
Publicado: (2008) -
From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
por: Opgen-Rhein, Rainer, et al.
Publicado: (2007) -
A whitening approach to probabilistic canonical correlation analysis for omics data integration
por: Jendoubi, Takoua, et al.
Publicado: (2019) -
Corrected likelihood for proportional hazards measurement error model and its application.
por: Nakamura, T, et al.
Publicado: (1994) -
Likelihood Ratio Testing under Measurement Errors
por: Broniatowski, Michel, et al.
Publicado: (2018)