Cargando…

A protein kinase Cβ inhibitor attenuates multidrug resistance of neuroblastoma cells

BACKGROUND: The acquisition of drug resistance is a major reason for poor outcome of neuroblastoma. Protein kinase C (PKC) has been suggested to influence drug resistance in cancer cells. The aim of this study was to elucidate whether inhibition of PKCβ isoforms influences drug-resistance of neurobl...

Descripción completa

Detalles Bibliográficos
Autores principales: Svensson, Karin, Larsson, Christer
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC153510/
https://www.ncbi.nlm.nih.gov/pubmed/12697075
http://dx.doi.org/10.1186/1471-2407-3-10
Descripción
Sumario:BACKGROUND: The acquisition of drug resistance is a major reason for poor outcome of neuroblastoma. Protein kinase C (PKC) has been suggested to influence drug resistance in cancer cells. The aim of this study was to elucidate whether inhibition of PKCβ isoforms influences drug-resistance of neuroblastoma cells. METHODS: The effect of the PKCβ inhibitor LY379196 on the growth-suppressing effects of different chemotherapeutics on neuroblastoma cells was analyzed with MTT assays. The effect of LY379196 on the accumulation of [(3)H]vincristine was also investigated RESULTS: The PKCβ inhibitor LY379196 suppressed the growth of three neuroblastoma cell lines. LY379196 also augmented the growth-suppressive effect of doxorubicin, etoposide, paclitaxel, and vincristine, but not of carboplatin. The effect was most marked for vincristine and for the cell-line (SK-N-BE(2)) that was least sensitive to vincristine. No effect was observed on the non-resistant IMR-32 cells. Two other PKC inhibitors, Gö6976 and GF109203X, also enhanced the vincristine effect. The PKC inhibitors caused an increased accumulation of [(3)H]vincristine in SK-N-BE(2) cells. CONCLUSIONS: This indicates that inhibition of PKCβ could attenuate multidrug resistance in neuroblastoma cells by augmenting the levels of natural product anticancer drugs in resistant cells.