Cargando…

BAGEL: a web-based bacteriocin genome mining tool

A common problem in the annotation of open reading frames (ORFs) is the identification of genes that are functionally similar but have limited or no sequence homology. This is particularly the case for bacteriocins, a very diverse group of antimicrobial peptides produced by bacteria and usually enco...

Descripción completa

Detalles Bibliográficos
Autores principales: de Jong, Anne, van Hijum, Sacha A. F. T., Bijlsma, Jetta J. E., Kok, Jan, Kuipers, Oscar P.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538908/
https://www.ncbi.nlm.nih.gov/pubmed/16845009
http://dx.doi.org/10.1093/nar/gkl237
_version_ 1782129150183604224
author de Jong, Anne
van Hijum, Sacha A. F. T.
Bijlsma, Jetta J. E.
Kok, Jan
Kuipers, Oscar P.
author_facet de Jong, Anne
van Hijum, Sacha A. F. T.
Bijlsma, Jetta J. E.
Kok, Jan
Kuipers, Oscar P.
author_sort de Jong, Anne
collection PubMed
description A common problem in the annotation of open reading frames (ORFs) is the identification of genes that are functionally similar but have limited or no sequence homology. This is particularly the case for bacteriocins, a very diverse group of antimicrobial peptides produced by bacteria and usually encoded by small, poorly conserved ORFs. ORFs surrounding bacteriocin genes are often biosynthetic genes. This information can be used to locate putative structural bacteriocin genes. Here, we describe BAGEL, a web server that identifies putative bacteriocin ORFs in a DNA sequence using novel, knowledge-based bacteriocin databases and motif databases. Many bacteriocins are encoded by small genes that are often omitted in the annotation process of bacterial genomes. Thus, we have implemented ORF detection using a number of published ORF prediction tools. In addition, BAGEL takes into account the genomic context, i.e. for each potential bacteriocin-encoding ORF, the sequence of the surrounding region on the genome is analyzed for genes that might encode proteins involved in biosynthesis, transport, regulation and/or immunity. These innovations make BAGEL unique in its ability to detect putative bacteriocin gene clusters in (new) bacterial genomes. BAGEL is freely accessible at: .
format Text
id pubmed-1538908
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-15389082006-08-18 BAGEL: a web-based bacteriocin genome mining tool de Jong, Anne van Hijum, Sacha A. F. T. Bijlsma, Jetta J. E. Kok, Jan Kuipers, Oscar P. Nucleic Acids Res Article A common problem in the annotation of open reading frames (ORFs) is the identification of genes that are functionally similar but have limited or no sequence homology. This is particularly the case for bacteriocins, a very diverse group of antimicrobial peptides produced by bacteria and usually encoded by small, poorly conserved ORFs. ORFs surrounding bacteriocin genes are often biosynthetic genes. This information can be used to locate putative structural bacteriocin genes. Here, we describe BAGEL, a web server that identifies putative bacteriocin ORFs in a DNA sequence using novel, knowledge-based bacteriocin databases and motif databases. Many bacteriocins are encoded by small genes that are often omitted in the annotation process of bacterial genomes. Thus, we have implemented ORF detection using a number of published ORF prediction tools. In addition, BAGEL takes into account the genomic context, i.e. for each potential bacteriocin-encoding ORF, the sequence of the surrounding region on the genome is analyzed for genes that might encode proteins involved in biosynthesis, transport, regulation and/or immunity. These innovations make BAGEL unique in its ability to detect putative bacteriocin gene clusters in (new) bacterial genomes. BAGEL is freely accessible at: . Oxford University Press 2006-07-01 2006-07-14 /pmc/articles/PMC1538908/ /pubmed/16845009 http://dx.doi.org/10.1093/nar/gkl237 Text en © 2006 The Author(s)
spellingShingle Article
de Jong, Anne
van Hijum, Sacha A. F. T.
Bijlsma, Jetta J. E.
Kok, Jan
Kuipers, Oscar P.
BAGEL: a web-based bacteriocin genome mining tool
title BAGEL: a web-based bacteriocin genome mining tool
title_full BAGEL: a web-based bacteriocin genome mining tool
title_fullStr BAGEL: a web-based bacteriocin genome mining tool
title_full_unstemmed BAGEL: a web-based bacteriocin genome mining tool
title_short BAGEL: a web-based bacteriocin genome mining tool
title_sort bagel: a web-based bacteriocin genome mining tool
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538908/
https://www.ncbi.nlm.nih.gov/pubmed/16845009
http://dx.doi.org/10.1093/nar/gkl237
work_keys_str_mv AT dejonganne bagelawebbasedbacteriocingenomeminingtool
AT vanhijumsachaaft bagelawebbasedbacteriocingenomeminingtool
AT bijlsmajettaje bagelawebbasedbacteriocingenomeminingtool
AT kokjan bagelawebbasedbacteriocingenomeminingtool
AT kuipersoscarp bagelawebbasedbacteriocingenomeminingtool