Cargando…

KemaDom: a web server for domain prediction using kernel machine with local context

Predicting domains of proteins is an important and challenging problem in computational biology because of its significant role in understanding the complexity of proteomes. Although many template-based prediction servers have been developed, ab initio methods should be designed and further improved...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Lusheng, Wang, Wei, Ling, Shaoping, Jia, Caiyan, Wang, Fei
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538912/
https://www.ncbi.nlm.nih.gov/pubmed/16844982
http://dx.doi.org/10.1093/nar/gkl331
_version_ 1782129151110545408
author Chen, Lusheng
Wang, Wei
Ling, Shaoping
Jia, Caiyan
Wang, Fei
author_facet Chen, Lusheng
Wang, Wei
Ling, Shaoping
Jia, Caiyan
Wang, Fei
author_sort Chen, Lusheng
collection PubMed
description Predicting domains of proteins is an important and challenging problem in computational biology because of its significant role in understanding the complexity of proteomes. Although many template-based prediction servers have been developed, ab initio methods should be designed and further improved to be the complementarity of the template-based methods. In this paper, we present a novel domain prediction system KemaDom by ensembling three kernel machines with the local context information among neighboring amino acids. KemaDom, an alternative ab initio predictor, can achieve high performance in predicting the number of domains in proteins. It is freely accessible at and .
format Text
id pubmed-1538912
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-15389122006-08-18 KemaDom: a web server for domain prediction using kernel machine with local context Chen, Lusheng Wang, Wei Ling, Shaoping Jia, Caiyan Wang, Fei Nucleic Acids Res Article Predicting domains of proteins is an important and challenging problem in computational biology because of its significant role in understanding the complexity of proteomes. Although many template-based prediction servers have been developed, ab initio methods should be designed and further improved to be the complementarity of the template-based methods. In this paper, we present a novel domain prediction system KemaDom by ensembling three kernel machines with the local context information among neighboring amino acids. KemaDom, an alternative ab initio predictor, can achieve high performance in predicting the number of domains in proteins. It is freely accessible at and . Oxford University Press 2006-07-01 2006-07-14 /pmc/articles/PMC1538912/ /pubmed/16844982 http://dx.doi.org/10.1093/nar/gkl331 Text en © The Author 2006. Published by Oxford University Press. All rights reserved
spellingShingle Article
Chen, Lusheng
Wang, Wei
Ling, Shaoping
Jia, Caiyan
Wang, Fei
KemaDom: a web server for domain prediction using kernel machine with local context
title KemaDom: a web server for domain prediction using kernel machine with local context
title_full KemaDom: a web server for domain prediction using kernel machine with local context
title_fullStr KemaDom: a web server for domain prediction using kernel machine with local context
title_full_unstemmed KemaDom: a web server for domain prediction using kernel machine with local context
title_short KemaDom: a web server for domain prediction using kernel machine with local context
title_sort kemadom: a web server for domain prediction using kernel machine with local context
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538912/
https://www.ncbi.nlm.nih.gov/pubmed/16844982
http://dx.doi.org/10.1093/nar/gkl331
work_keys_str_mv AT chenlusheng kemadomawebserverfordomainpredictionusingkernelmachinewithlocalcontext
AT wangwei kemadomawebserverfordomainpredictionusingkernelmachinewithlocalcontext
AT lingshaoping kemadomawebserverfordomainpredictionusingkernelmachinewithlocalcontext
AT jiacaiyan kemadomawebserverfordomainpredictionusingkernelmachinewithlocalcontext
AT wangfei kemadomawebserverfordomainpredictionusingkernelmachinewithlocalcontext