Cargando…
Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data
BACKGROUND: Numerous feature selection methods have been applied to the identification of differentially expressed genes in microarray data. These include simple fold change, classical t-statistic and moderated t-statistics. Even though these methods return gene lists that are often dissimilar, few...
Autores principales: | Jeffery, Ian B, Higgins, Desmond G, Culhane, Aedín C |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1544358/ https://www.ncbi.nlm.nih.gov/pubmed/16872483 http://dx.doi.org/10.1186/1471-2105-7-359 |
Ejemplares similares
-
Cross-platform comparison and visualisation of gene expression data using co-inertia analysis
por: Culhane, Aedín C, et al.
Publicado: (2003) -
Integrating multiple genome annotation databases improves the interpretation of microarray gene expression data
por: Yin, Jun, et al.
Publicado: (2010) -
Impact of Data Preprocessing on Integrative Matrix Factorization of Single Cell Data
por: Hsu, Lauren L., et al.
Publicado: (2020) -
The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies
por: Shi, Leming, et al.
Publicado: (2008) -
Detecting differential expression in microarray data: comparison of optimal procedures
por: Perelman, Elena, et al.
Publicado: (2007)