Cargando…
Machine learning and word sense disambiguation in the biomedical domain: design and evaluation issues
BACKGROUND: Word sense disambiguation (WSD) is critical in the biomedical domain for improving the precision of natural language processing (NLP), text mining, and information retrieval systems because ambiguous words negatively impact accurate access to literature containing biomolecular entities,...
Autores principales: | Xu, Hua, Markatou, Marianthi, Dimova, Rositsa, Liu, Hongfang, Friedman, Carol |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1550263/ https://www.ncbi.nlm.nih.gov/pubmed/16822321 http://dx.doi.org/10.1186/1471-2105-7-334 |
Ejemplares similares
-
A Learning-Based Approach for Biomedical Word Sense Disambiguation
por: Al-Mubaid, Hisham, et al.
Publicado: (2012) -
Knowledge-based biomedical word sense disambiguation: comparison of approaches
por: Jimeno-Yepes, Antonio J, et al.
Publicado: (2010) -
Biomedical word sense disambiguation with ontologies and metadata: automation meets accuracy
por: Alexopoulou, Dimitra, et al.
Publicado: (2009) -
Exploiting domain information for Word Sense Disambiguation of medical documents
por: Stevenson, Mark, et al.
Publicado: (2011) -
Fast max-margin clustering for unsupervised word sense disambiguation in biomedical texts
por: Duan, Weisi, et al.
Publicado: (2009)