Cargando…

Linkage analysis of longitudinal data and design consideration

BACKGROUND: Statistical methods have been proposed recently to analyze longitudinal data in genetic studies. So far, little attention has been paid to examine the relationship among key factors in genetic longitudinal studies including power, the number of families or sibships, and the number of rep...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Heping, Zhong, Xiaoyun
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1550417/
https://www.ncbi.nlm.nih.gov/pubmed/16768806
http://dx.doi.org/10.1186/1471-2156-7-37
Descripción
Sumario:BACKGROUND: Statistical methods have been proposed recently to analyze longitudinal data in genetic studies. So far, little attention has been paid to examine the relationship among key factors in genetic longitudinal studies including power, the number of families or sibships, and the number of repeated measures per individual subjects. RESULTS: We proposed a variance component model that extends classic variance component models for a single quantitative trait to mapping longitudinal traits. Our model includes covariate effects and allows genetic effects to vary over time. Using our proposed model, we examined the power, pedigree structures, and sample size through simulation experiments. CONCLUSION: Our simulation results provide useful insights into the study design for genetic, longitudinal studies. For example, collecting a small number of large sibships is much more powerful than collecting a large number of small sibships or increasing the number of repeated measures, when the total number of measurements is comparable.