Cargando…

Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke

BACKGROUND: The presence of abnormal muscle activation patterns is a well documented factor limiting the motor rehabilitation of patients following stroke. These abnormal muscle activation patterns, or synergies, have previously been quantified in the upper limbs. Presented here are the lower limb j...

Descripción completa

Detalles Bibliográficos
Autores principales: Neckel, Nathan, Pelliccio, Marlena, Nichols, Diane, Hidler, Joseph
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1553458/
https://www.ncbi.nlm.nih.gov/pubmed/16857059
http://dx.doi.org/10.1186/1743-0003-3-17
_version_ 1782129351107543040
author Neckel, Nathan
Pelliccio, Marlena
Nichols, Diane
Hidler, Joseph
author_facet Neckel, Nathan
Pelliccio, Marlena
Nichols, Diane
Hidler, Joseph
author_sort Neckel, Nathan
collection PubMed
description BACKGROUND: The presence of abnormal muscle activation patterns is a well documented factor limiting the motor rehabilitation of patients following stroke. These abnormal muscle activation patterns, or synergies, have previously been quantified in the upper limbs. Presented here are the lower limb joint torque patterns measured in a standing position of sixteen chronic hemiparetic stroke subjects and sixteen age matched controls used to examine differences in strength and coordination between the two groups. METHODS: With the trunk stabilized, stroke subjects stood on their unaffected leg while their affected foot was attached to a 6-degree of freedom load cell (JR3, Woodland CA) which recorded forces and torques. The subjects were asked to generate a maximum torque about a given joint (hip abduction/adduction; hip, knee, and ankle flexion/extension) and provided feedback of the torque they generated for that primary joint axis. In parallel, EMG data from eight muscle groups were recorded, and secondary torques generated about the adjacent joints were calculated. Differences in mean primary torque, secondary torque, and EMG data were compared using a single factor ANOVA. RESULTS: The stroke group was significantly weaker in six of the eight directions tested. Analysis of the secondary torques showed that the control and stroke subjects used similar strategies to generate maximum torques during seven of the eight joint movements tested. The only time a different strategy was used was during maximal hip abduction exertions where stroke subjects tended to flex instead of extend their hip, which was consistent with the classically defined "flexion synergy." The EMG data of the stroke group was different than the control group in that there was a strong presence of co-contraction of antagonistic muscle groups, especially during ankle flexion and ankle and knee extension. CONCLUSION: The results of this study indicate that in a standing position stroke subjects are significantly weaker in their affected leg when compared to age-matched controls, yet showed little evidence of the classic lower-limb abnormal synergy patterns previously reported. The findings here suggest that the primary contributor to isometric lower limb motor deficits in chronic stroke subjects is weakness.
format Text
id pubmed-1553458
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-15534582006-08-25 Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke Neckel, Nathan Pelliccio, Marlena Nichols, Diane Hidler, Joseph J Neuroengineering Rehabil Research BACKGROUND: The presence of abnormal muscle activation patterns is a well documented factor limiting the motor rehabilitation of patients following stroke. These abnormal muscle activation patterns, or synergies, have previously been quantified in the upper limbs. Presented here are the lower limb joint torque patterns measured in a standing position of sixteen chronic hemiparetic stroke subjects and sixteen age matched controls used to examine differences in strength and coordination between the two groups. METHODS: With the trunk stabilized, stroke subjects stood on their unaffected leg while their affected foot was attached to a 6-degree of freedom load cell (JR3, Woodland CA) which recorded forces and torques. The subjects were asked to generate a maximum torque about a given joint (hip abduction/adduction; hip, knee, and ankle flexion/extension) and provided feedback of the torque they generated for that primary joint axis. In parallel, EMG data from eight muscle groups were recorded, and secondary torques generated about the adjacent joints were calculated. Differences in mean primary torque, secondary torque, and EMG data were compared using a single factor ANOVA. RESULTS: The stroke group was significantly weaker in six of the eight directions tested. Analysis of the secondary torques showed that the control and stroke subjects used similar strategies to generate maximum torques during seven of the eight joint movements tested. The only time a different strategy was used was during maximal hip abduction exertions where stroke subjects tended to flex instead of extend their hip, which was consistent with the classically defined "flexion synergy." The EMG data of the stroke group was different than the control group in that there was a strong presence of co-contraction of antagonistic muscle groups, especially during ankle flexion and ankle and knee extension. CONCLUSION: The results of this study indicate that in a standing position stroke subjects are significantly weaker in their affected leg when compared to age-matched controls, yet showed little evidence of the classic lower-limb abnormal synergy patterns previously reported. The findings here suggest that the primary contributor to isometric lower limb motor deficits in chronic stroke subjects is weakness. BioMed Central 2006-07-20 /pmc/articles/PMC1553458/ /pubmed/16857059 http://dx.doi.org/10.1186/1743-0003-3-17 Text en Copyright © 2006 Neckel et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Neckel, Nathan
Pelliccio, Marlena
Nichols, Diane
Hidler, Joseph
Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke
title Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke
title_full Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke
title_fullStr Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke
title_full_unstemmed Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke
title_short Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke
title_sort quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1553458/
https://www.ncbi.nlm.nih.gov/pubmed/16857059
http://dx.doi.org/10.1186/1743-0003-3-17
work_keys_str_mv AT neckelnathan quantificationoffunctionalweaknessandabnormalsynergypatternsinthelowerlimbofindividualswithchronicstroke
AT pellicciomarlena quantificationoffunctionalweaknessandabnormalsynergypatternsinthelowerlimbofindividualswithchronicstroke
AT nicholsdiane quantificationoffunctionalweaknessandabnormalsynergypatternsinthelowerlimbofindividualswithchronicstroke
AT hidlerjoseph quantificationoffunctionalweaknessandabnormalsynergypatternsinthelowerlimbofindividualswithchronicstroke