Cargando…
Independent component analysis reveals new and biologically significant structures in micro array data
BACKGROUND: An alternative to standard approaches to uncover biologically meaningful structures in micro array data is to treat the data as a blind source separation (BSS) problem. BSS attempts to separate a mixture of signals into their different sources and refers to the problem of recovering sign...
Autores principales: | Frigyesi, Attila, Veerla, Srinivas, Lindgren, David, Höglund, Mattias |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557674/ https://www.ncbi.nlm.nih.gov/pubmed/16762055 http://dx.doi.org/10.1186/1471-2105-7-290 |
Ejemplares similares
-
Analysis of promoter regions of co-expressed genes identified by microarray analysis
por: Veerla, Srinivas, et al.
Publicado: (2006) -
Genome-wide transcription factor binding site/promoter databases for the analysis of gene sets and co-occurrence of transcription factor binding motifs
por: Veerla, Srinivas, et al.
Publicado: (2010) -
Non-Negative Matrix Factorization for the Analysis of Complex Gene Expression Data: Identification of Clinically Relevant Tumor Subtypes
por: Frigyesi, Attila, et al.
Publicado: (2008) -
Robust assignment of cancer subtypes from expression data using a uni-variate gene expression average as classifier
por: Lauss, Martin, et al.
Publicado: (2010) -
Integrative epigenomic analysis of differential DNA methylation in urothelial carcinoma
por: Aine, Mattias, et al.
Publicado: (2015)