Cargando…

Ranked prediction of p53 targets using hidden variable dynamic modeling

Full exploitation of microarray data requires hidden information that cannot be extracted using current analysis methodologies. We present a new approach, hidden variable dynamic modeling (HVDM), which derives the hidden profile of a transcription factor from time series microarray data, and generat...

Descripción completa

Detalles Bibliográficos
Autores principales: Barenco, Martino, Tomescu, Daniela, Brewer, Daniel, Callard, Robin, Stark, Jaroslav, Hubank, Michael
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557743/
https://www.ncbi.nlm.nih.gov/pubmed/16584535
http://dx.doi.org/10.1186/gb-2006-7-3-r25
Descripción
Sumario:Full exploitation of microarray data requires hidden information that cannot be extracted using current analysis methodologies. We present a new approach, hidden variable dynamic modeling (HVDM), which derives the hidden profile of a transcription factor from time series microarray data, and generates a ranked list of predicted targets. We applied HVDM to the p53 network, validating predictions experimentally using small interfering RNA. HVDM can be applied in many systems biology contexts to predict regulation of gene activity quantitatively.