Cargando…
Ranked prediction of p53 targets using hidden variable dynamic modeling
Full exploitation of microarray data requires hidden information that cannot be extracted using current analysis methodologies. We present a new approach, hidden variable dynamic modeling (HVDM), which derives the hidden profile of a transcription factor from time series microarray data, and generat...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557743/ https://www.ncbi.nlm.nih.gov/pubmed/16584535 http://dx.doi.org/10.1186/gb-2006-7-3-r25 |
_version_ | 1782129402325237760 |
---|---|
author | Barenco, Martino Tomescu, Daniela Brewer, Daniel Callard, Robin Stark, Jaroslav Hubank, Michael |
author_facet | Barenco, Martino Tomescu, Daniela Brewer, Daniel Callard, Robin Stark, Jaroslav Hubank, Michael |
author_sort | Barenco, Martino |
collection | PubMed |
description | Full exploitation of microarray data requires hidden information that cannot be extracted using current analysis methodologies. We present a new approach, hidden variable dynamic modeling (HVDM), which derives the hidden profile of a transcription factor from time series microarray data, and generates a ranked list of predicted targets. We applied HVDM to the p53 network, validating predictions experimentally using small interfering RNA. HVDM can be applied in many systems biology contexts to predict regulation of gene activity quantitatively. |
format | Text |
id | pubmed-1557743 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-15577432006-09-01 Ranked prediction of p53 targets using hidden variable dynamic modeling Barenco, Martino Tomescu, Daniela Brewer, Daniel Callard, Robin Stark, Jaroslav Hubank, Michael Genome Biol Method Full exploitation of microarray data requires hidden information that cannot be extracted using current analysis methodologies. We present a new approach, hidden variable dynamic modeling (HVDM), which derives the hidden profile of a transcription factor from time series microarray data, and generates a ranked list of predicted targets. We applied HVDM to the p53 network, validating predictions experimentally using small interfering RNA. HVDM can be applied in many systems biology contexts to predict regulation of gene activity quantitatively. BioMed Central 2006 2006-03-31 /pmc/articles/PMC1557743/ /pubmed/16584535 http://dx.doi.org/10.1186/gb-2006-7-3-r25 Text en Copyright © 2006 Barenco et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Method Barenco, Martino Tomescu, Daniela Brewer, Daniel Callard, Robin Stark, Jaroslav Hubank, Michael Ranked prediction of p53 targets using hidden variable dynamic modeling |
title | Ranked prediction of p53 targets using hidden variable dynamic modeling |
title_full | Ranked prediction of p53 targets using hidden variable dynamic modeling |
title_fullStr | Ranked prediction of p53 targets using hidden variable dynamic modeling |
title_full_unstemmed | Ranked prediction of p53 targets using hidden variable dynamic modeling |
title_short | Ranked prediction of p53 targets using hidden variable dynamic modeling |
title_sort | ranked prediction of p53 targets using hidden variable dynamic modeling |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557743/ https://www.ncbi.nlm.nih.gov/pubmed/16584535 http://dx.doi.org/10.1186/gb-2006-7-3-r25 |
work_keys_str_mv | AT barencomartino rankedpredictionofp53targetsusinghiddenvariabledynamicmodeling AT tomescudaniela rankedpredictionofp53targetsusinghiddenvariabledynamicmodeling AT brewerdaniel rankedpredictionofp53targetsusinghiddenvariabledynamicmodeling AT callardrobin rankedpredictionofp53targetsusinghiddenvariabledynamicmodeling AT starkjaroslav rankedpredictionofp53targetsusinghiddenvariabledynamicmodeling AT hubankmichael rankedpredictionofp53targetsusinghiddenvariabledynamicmodeling |