Cargando…
Ranked prediction of p53 targets using hidden variable dynamic modeling
Full exploitation of microarray data requires hidden information that cannot be extracted using current analysis methodologies. We present a new approach, hidden variable dynamic modeling (HVDM), which derives the hidden profile of a transcription factor from time series microarray data, and generat...
Autores principales: | Barenco, Martino, Tomescu, Daniela, Brewer, Daniel, Callard, Robin, Stark, Jaroslav, Hubank, Michael |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557743/ https://www.ncbi.nlm.nih.gov/pubmed/16584535 http://dx.doi.org/10.1186/gb-2006-7-3-r25 |
Ejemplares similares
-
Correction of scaling mismatches in oligonucleotide microarray data
por: Barenco, Martino, et al.
Publicado: (2006) -
Dissection of a complex transcriptional response using genome-wide transcriptional modelling
por: Barenco, Martino, et al.
Publicado: (2009) -
Revealing Individual Signatures of Human T Cell CDR3 Sequence Repertoires with Kidera Factors
por: Epstein, Michael, et al.
Publicado: (2014) -
Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments
por: García-Alonso, Luz, et al.
Publicado: (2012) -
Ranking species based on sensitivity to perturbations under non‐equilibrium community dynamics
por: Medeiros, Lucas P., et al.
Publicado: (2022)