Cargando…

ICP0 antagonizes Stat 1-dependent repression of herpes simplex virus: implications for the regulation of viral latency

BACKGROUND: The herpes simplex virus type 1 (HSV-1) ICP0 protein is an E3 ubiquitin ligase, which is encoded within the HSV-1 latency-associated locus. When ICP0 is not synthesized, the HSV-1 genome is acutely susceptible to cellular repression. Reciprocally, when ICP0 is synthesized, viral replicat...

Descripción completa

Detalles Bibliográficos
Autores principales: Halford, William P, Weisend, Carla, Grace, Jennifer, Soboleski, Mark, Carr, Daniel JJ, Balliet, John W, Imai, Yumi, Margolis, Todd P, Gebhardt, Bryan M
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557838/
https://www.ncbi.nlm.nih.gov/pubmed/16764725
http://dx.doi.org/10.1186/1743-422X-3-44
Descripción
Sumario:BACKGROUND: The herpes simplex virus type 1 (HSV-1) ICP0 protein is an E3 ubiquitin ligase, which is encoded within the HSV-1 latency-associated locus. When ICP0 is not synthesized, the HSV-1 genome is acutely susceptible to cellular repression. Reciprocally, when ICP0 is synthesized, viral replication is efficiently initiated from virions or latent HSV-1 genomes. The current study was initiated to determine if ICP0's putative role as a viral interferon (IFN) antagonist may be relevant to the process by which ICP0 influences the balance between productive replication versus cellular repression of HSV-1. RESULTS: Wild-type (ICP0(+)) strains of HSV-1 produced lethal infections in scid or rag2(-/- )mice. The replication of ICP0(- )null viruses was rapidly repressed by the innate host response of scid or rag2(-/- )mice, and the infected animals remained healthy for months. In contrast, rag2(-/- )mice that lacked the IFN-α/β receptor (rag2(-/- )ifnar(-/-)) or Stat 1 (rag2(-/- )stat1(-/-)) failed to repress ICP0(- )viral replication, resulting in uncontrolled viral spread and death. Thus, the replication of ICP0(- )viruses is potently repressed in vivo by an innate immune response that is dependent on the IFN-α/β receptor and the downstream transcription factor, Stat 1. CONCLUSION: ICP0's function as a viral IFN antagonist is necessary in vivo to prevent an innate, Stat 1-dependent host response from rapidly repressing productive HSV-1 replication. This antagonistic relationship between ICP0 and the host IFN response may be relevant in regulating whether the HSV-1 genome is expressed, or silenced, in virus-infected cells in vivo. These results may also be clinically relevant. IFN-sensitive ICP0(- )viruses are avirulent, establish long-term latent infections, and induce an adaptive immune response that is highly protective against lethal challenge with HSV-1. Therefore, ICP0(- )viruses appear to possess the desired safety and efficacy profile of a live vaccine against herpetic disease.