Cargando…

Modelling carbon dynamics from urban land conversion: fundamental model of city in relation to a local carbon cycle

BACKGROUND: The main task is to estimate the qualitative and quantitative contribution of urban territories and precisely of the process of urbanization to the Global Carbon Cycle (GCC). Note that, on the contrary to many investigations that have considered direct anthropogenic emission of CO(2)(urb...

Descripción completa

Detalles Bibliográficos
Autores principales: Svirejeva-Hopkins, Anastasia, Schellnhuber, Hans-Joachim
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1562420/
https://www.ncbi.nlm.nih.gov/pubmed/16930464
http://dx.doi.org/10.1186/1750-0680-1-8
_version_ 1782129498604437504
author Svirejeva-Hopkins, Anastasia
Schellnhuber, Hans-Joachim
author_facet Svirejeva-Hopkins, Anastasia
Schellnhuber, Hans-Joachim
author_sort Svirejeva-Hopkins, Anastasia
collection PubMed
description BACKGROUND: The main task is to estimate the qualitative and quantitative contribution of urban territories and precisely of the process of urbanization to the Global Carbon Cycle (GCC). Note that, on the contrary to many investigations that have considered direct anthropogenic emission of CO(2)(urbanized territories produce ca. 96–98% of it), we are interested in more subtle, and up until the present time, weaker processes associated with the conversion of the surrounding natural ecosystems and landscapes into urban lands. Such conversion inevitably takes place when cities are sprawling and additional "natural" lands are becoming "urbanized". RESULTS: In order to fulfil this task, we first develop a fundamental model of urban space, since the type of land cover within a city makes a difference for a local carbon cycle. Hence, a city is sub-divided by built-up, „green" (parks, etc.) and informal settlements (favelas) fractions. Another aspect is a sub-division of the additional two regions, which makes the total number reaching eight regions, while the UN divides the world by six. Next, the basic model of the local carbon cycle for urbanized territories is built. We consider two processes: carbon emissions as a result of conversion of natural lands caused by urbanization; and the transformation of carbon flows by "urbanized" ecosystems; when carbon, accumulated by urban vegetation, is exported to the neighbouring territories. The total carbon flow in the model depends, in general, on two groups of parameters. The first includes the NPP, and the sum of living biomass and dead organic matter of ecosystems involved in the process of urbanization, and namely them we calculate here, using a new more realistic approach and taking into account the difference in regional cities' evolution. CONCLUSION: There is also another group of parameters, dealing with the areas of urban territories, and their annual increments. A method of dynamic forecasting of these parameters, based on the statistical regression model, was already suggested; nevertheless we shall further develop a new technique based on one idea to use the gamma-distribution. This will allow us to calculate the total carbon balance and to show how urbanization shifts it.
format Text
id pubmed-1562420
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-15624202006-09-14 Modelling carbon dynamics from urban land conversion: fundamental model of city in relation to a local carbon cycle Svirejeva-Hopkins, Anastasia Schellnhuber, Hans-Joachim Carbon Balance Manag Research BACKGROUND: The main task is to estimate the qualitative and quantitative contribution of urban territories and precisely of the process of urbanization to the Global Carbon Cycle (GCC). Note that, on the contrary to many investigations that have considered direct anthropogenic emission of CO(2)(urbanized territories produce ca. 96–98% of it), we are interested in more subtle, and up until the present time, weaker processes associated with the conversion of the surrounding natural ecosystems and landscapes into urban lands. Such conversion inevitably takes place when cities are sprawling and additional "natural" lands are becoming "urbanized". RESULTS: In order to fulfil this task, we first develop a fundamental model of urban space, since the type of land cover within a city makes a difference for a local carbon cycle. Hence, a city is sub-divided by built-up, „green" (parks, etc.) and informal settlements (favelas) fractions. Another aspect is a sub-division of the additional two regions, which makes the total number reaching eight regions, while the UN divides the world by six. Next, the basic model of the local carbon cycle for urbanized territories is built. We consider two processes: carbon emissions as a result of conversion of natural lands caused by urbanization; and the transformation of carbon flows by "urbanized" ecosystems; when carbon, accumulated by urban vegetation, is exported to the neighbouring territories. The total carbon flow in the model depends, in general, on two groups of parameters. The first includes the NPP, and the sum of living biomass and dead organic matter of ecosystems involved in the process of urbanization, and namely them we calculate here, using a new more realistic approach and taking into account the difference in regional cities' evolution. CONCLUSION: There is also another group of parameters, dealing with the areas of urban territories, and their annual increments. A method of dynamic forecasting of these parameters, based on the statistical regression model, was already suggested; nevertheless we shall further develop a new technique based on one idea to use the gamma-distribution. This will allow us to calculate the total carbon balance and to show how urbanization shifts it. BioMed Central 2006-08-15 /pmc/articles/PMC1562420/ /pubmed/16930464 http://dx.doi.org/10.1186/1750-0680-1-8 Text en Copyright © 2006 Svirejeva-Hopkins and Schellnhuber; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Svirejeva-Hopkins, Anastasia
Schellnhuber, Hans-Joachim
Modelling carbon dynamics from urban land conversion: fundamental model of city in relation to a local carbon cycle
title Modelling carbon dynamics from urban land conversion: fundamental model of city in relation to a local carbon cycle
title_full Modelling carbon dynamics from urban land conversion: fundamental model of city in relation to a local carbon cycle
title_fullStr Modelling carbon dynamics from urban land conversion: fundamental model of city in relation to a local carbon cycle
title_full_unstemmed Modelling carbon dynamics from urban land conversion: fundamental model of city in relation to a local carbon cycle
title_short Modelling carbon dynamics from urban land conversion: fundamental model of city in relation to a local carbon cycle
title_sort modelling carbon dynamics from urban land conversion: fundamental model of city in relation to a local carbon cycle
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1562420/
https://www.ncbi.nlm.nih.gov/pubmed/16930464
http://dx.doi.org/10.1186/1750-0680-1-8
work_keys_str_mv AT svirejevahopkinsanastasia modellingcarbondynamicsfromurbanlandconversionfundamentalmodelofcityinrelationtoalocalcarboncycle
AT schellnhuberhansjoachim modellingcarbondynamicsfromurbanlandconversionfundamentalmodelofcityinrelationtoalocalcarboncycle