Cargando…

Gemvid, an open source, modular, automated activity recording system for rats using digital video

BACKGROUND: Measurement of locomotor activity is a valuable tool for analysing factors influencing behaviour and for investigating brain function. Several methods have been described in the literature for measuring the amount of animal movement but most are flawed or expensive. Here, we describe an...

Descripción completa

Detalles Bibliográficos
Autores principales: Poirrier, Jean-Etienne, Poirrier, Laurent, Leprince, Pierre, Maquet, Pierre
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1564151/
https://www.ncbi.nlm.nih.gov/pubmed/16934136
http://dx.doi.org/10.1186/1740-3391-4-10
Descripción
Sumario:BACKGROUND: Measurement of locomotor activity is a valuable tool for analysing factors influencing behaviour and for investigating brain function. Several methods have been described in the literature for measuring the amount of animal movement but most are flawed or expensive. Here, we describe an open source, modular, low-cost, user-friendly, highly sensitive, non-invasive system that records all the movements of a rat in its cage. METHODS: Our activity monitoring system quantifies overall free movements of rodents without any markers, using a commercially available CCTV and a newly designed motion detection software developed on a GNU/Linux-operating computer. The operating principle is that the amount of overall movement of an object can be expressed by the difference in total area occupied by the object in two consecutive picture frames. The application is based on software modules that allow the system to be used in a high-throughput workflow. Documentation, example files, source code and binary files can be freely downloaded from the project website at . RESULTS: In a series of experiments with objects of pre-defined oscillation frequencies and movements, we documented the sensitivity, reproducibility and stability of our system. We also compared data obtained with our system and data obtained with an Actiwatch device. Finally, to validate the system, results obtained from the automated observation of 6 rats during 7 days in a regular light cycle are presented and are accompanied by a stability test. The validity of this system is further demonstrated through the observation of 2 rats in constant dark conditions that displayed the expected free running of their circadian rhythm. CONCLUSION: The present study describes a system that relies on video frame differences to automatically quantify overall free movements of a rodent without any markers. It allows the monitoring of rats in their own environment for an extended period of time. By using a low-cost, open source hardware/software solution, laboratories can greatly simplify their data acquisition and analysis pipelines and improve their workload.