Cargando…
Clustering gene-expression data with repeated measurements
Clustering is a common methodology for the analysis of array data, and many research laboratories are generating array data with repeated measurements. We evaluated several clustering algorithms that incorporate repeated measurements, and show that algorithms that take advantage of repeated measurem...
Autores principales: | Yeung, Ka Yee, Medvedovic, Mario, Bumgarner, Roger E |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC156590/ https://www.ncbi.nlm.nih.gov/pubmed/12734014 http://dx.doi.org/10.1186/gb-2003-4-5-r34 |
Ejemplares similares
-
Multiclass classification of microarray data with repeated measurements: application to cancer
por: Yeung, Ka Yee, et al.
Publicado: (2003) -
From co-expression to co-regulation: how many microarray experiments do we need?
por: Yeung, Ka Yee, et al.
Publicado: (2004) -
Correction: Multiclass classification of microarray data with repeated measurements: application to cancer
por: Yeung, Ka Yee, et al.
Publicado: (2005) -
MeV+R: using MeV as a graphical user interface for Bioconductor applications in microarray analysis
por: Chu, Vu T, et al.
Publicado: (2008) -
Simcluster: clustering enumeration gene expression data on the simplex space
por: Vêncio, Ricardo ZN, et al.
Publicado: (2007)