Cargando…

A comparison of continuous- and discrete- time three-state models for rodent tumorigenicity experiments.

The three-state illness-death model provides a useful way to characterize data from a rodent tumorigenicity experiment. Most parametrizations proposed recently in the literature assume discrete time for the death process and either discrete or continuous time for the tumor onset process. We compare...

Descripción completa

Detalles Bibliográficos
Autores principales: Lindsey, J C, Ryan, L M
Formato: Texto
Lenguaje:English
Publicado: 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1566894/
https://www.ncbi.nlm.nih.gov/pubmed/8187731
Descripción
Sumario:The three-state illness-death model provides a useful way to characterize data from a rodent tumorigenicity experiment. Most parametrizations proposed recently in the literature assume discrete time for the death process and either discrete or continuous time for the tumor onset process. We compare these approaches with a third alternative that uses a piecewise continuous model on the hazards for tumor onset and death. All three models assume proportional hazards to characterize tumor lethality and the effect of dose on tumor onset and death rate. All of the models can easily be fitted using an Expectation Maximization (EM) algorithm. The piecewise continuous model is particularly appealing in this context because the complete data likelihood corresponds to a standard piecewise exponential model with tumor presence as a time-varying covariate. It can be shown analytically that differences between the parameter estimates given by each model are explained by varying assumptions about when tumor onsets, deaths, and sacrifices occur within intervals. The mixed-time model is seen to be an extension of the grouped data proportional hazards model [Mutat. Res. 24:267-278 (1981)]. We argue that the continuous-time model is preferable to the discrete- and mixed-time models because it gives reasonable estimates with relatively few intervals while still making full use of the available information. Data from the ED01 experiment illustrate the results.