Cargando…

In vivo effects of chromium.

The production of reactive oxygen species on addition of hexavalent chromium (potassium dichromate, K2Cr2O7) to lung cells in culture was studied using flow cytometer analysis. A Coulter Epics Profile II flow cytometer was used to detect the formation of reactive oxygen species after K2Cr2O7 was add...

Descripción completa

Detalles Bibliográficos
Autores principales: Witmer, C, Faria, E, Park, H S, Sadrieh, N, Yurkow, E, O'Connell, S, Sirak, A, Schleyer, H
Formato: Texto
Lenguaje:English
Publicado: 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1567379/
https://www.ncbi.nlm.nih.gov/pubmed/7843092
_version_ 1782129815478861824
author Witmer, C
Faria, E
Park, H S
Sadrieh, N
Yurkow, E
O'Connell, S
Sirak, A
Schleyer, H
author_facet Witmer, C
Faria, E
Park, H S
Sadrieh, N
Yurkow, E
O'Connell, S
Sirak, A
Schleyer, H
author_sort Witmer, C
collection PubMed
description The production of reactive oxygen species on addition of hexavalent chromium (potassium dichromate, K2Cr2O7) to lung cells in culture was studied using flow cytometer analysis. A Coulter Epics Profile II flow cytometer was used to detect the formation of reactive oxygen species after K2Cr2O7 was added to A549 cells grown to confluence. The cells were loaded with the dye, 2',7'-dichlorofluorescein diacetate, after which cellular esterases removed the acetate groups and the dye was trapped intracellularly. Reactive oxygen species oxidized the dye, with resultant fluorescence. Increased doses of Cr(VI) caused increasing fluorescence (10-fold higher than background at 200 microM). Addition of Cr(III) compounds, as the picolinate or chloride, caused no increased fluorescence. Electron paramagnetic resonance (EPR) spectroscopic studies indicated that three (as yet unidentified) spectral "signals" of the free radical type were formed on addition of 20, 50, 100, and 200 microM Cr(VI) to the A549 cells in suspension. Two other EPR "signals" with the characteristics of Cr(V) entities were seen at field values lower than the standard free radical value. Liver microsomes from male Sprague-Dawley rats treated intraperitoneally with K2Cr2O7 (130 mumole/kg every 48 hr for six treatments) had decreased activity of cytochromes P4503A1 and/or 3A2, and 2C11. Hepatic microsomes from treated female Sprague-Dawley rats, in contrast, had increased activities of these isozymes. Lung microsomes from male Sprague-Dawley rats had increased activity of P4502C11.
format Text
id pubmed-1567379
institution National Center for Biotechnology Information
language English
publishDate 1994
record_format MEDLINE/PubMed
spelling pubmed-15673792006-09-19 In vivo effects of chromium. Witmer, C Faria, E Park, H S Sadrieh, N Yurkow, E O'Connell, S Sirak, A Schleyer, H Environ Health Perspect Research Article The production of reactive oxygen species on addition of hexavalent chromium (potassium dichromate, K2Cr2O7) to lung cells in culture was studied using flow cytometer analysis. A Coulter Epics Profile II flow cytometer was used to detect the formation of reactive oxygen species after K2Cr2O7 was added to A549 cells grown to confluence. The cells were loaded with the dye, 2',7'-dichlorofluorescein diacetate, after which cellular esterases removed the acetate groups and the dye was trapped intracellularly. Reactive oxygen species oxidized the dye, with resultant fluorescence. Increased doses of Cr(VI) caused increasing fluorescence (10-fold higher than background at 200 microM). Addition of Cr(III) compounds, as the picolinate or chloride, caused no increased fluorescence. Electron paramagnetic resonance (EPR) spectroscopic studies indicated that three (as yet unidentified) spectral "signals" of the free radical type were formed on addition of 20, 50, 100, and 200 microM Cr(VI) to the A549 cells in suspension. Two other EPR "signals" with the characteristics of Cr(V) entities were seen at field values lower than the standard free radical value. Liver microsomes from male Sprague-Dawley rats treated intraperitoneally with K2Cr2O7 (130 mumole/kg every 48 hr for six treatments) had decreased activity of cytochromes P4503A1 and/or 3A2, and 2C11. Hepatic microsomes from treated female Sprague-Dawley rats, in contrast, had increased activities of these isozymes. Lung microsomes from male Sprague-Dawley rats had increased activity of P4502C11. 1994-09 /pmc/articles/PMC1567379/ /pubmed/7843092 Text en
spellingShingle Research Article
Witmer, C
Faria, E
Park, H S
Sadrieh, N
Yurkow, E
O'Connell, S
Sirak, A
Schleyer, H
In vivo effects of chromium.
title In vivo effects of chromium.
title_full In vivo effects of chromium.
title_fullStr In vivo effects of chromium.
title_full_unstemmed In vivo effects of chromium.
title_short In vivo effects of chromium.
title_sort in vivo effects of chromium.
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1567379/
https://www.ncbi.nlm.nih.gov/pubmed/7843092
work_keys_str_mv AT witmerc invivoeffectsofchromium
AT fariae invivoeffectsofchromium
AT parkhs invivoeffectsofchromium
AT sadriehn invivoeffectsofchromium
AT yurkowe invivoeffectsofchromium
AT oconnells invivoeffectsofchromium
AT siraka invivoeffectsofchromium
AT schleyerh invivoeffectsofchromium