Cargando…
On the consequences of model misspecification in logistic regression.
Logistic regression models are commonly used to study the association between a binary response variable and an exposure variable. Besides the exposure of interest, other covariates are frequently included in the fitted model in order to control for their effects on outcome. Unfortunately, misspecif...
Autores principales: | Begg, M D, Lagakos, S |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
1990
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1567834/ https://www.ncbi.nlm.nih.gov/pubmed/2269243 |
Ejemplares similares
-
Misspecification of Cox regression models with composite endpoints
por: Wu, Longyang, et al.
Publicado: (2012) -
Genetic model misspecification in genetic association studies
por: Gaye, Amadou, et al.
Publicado: (2017) -
Comparing performance between log-binomial and robust Poisson regression models for estimating risk ratios under model misspecification
por: Chen, Wansu, et al.
Publicado: (2018) -
Assessing and Resolving Model Misspecifications in Metabolic Flux Analysis
por: Gunawan, Rudiyanto, et al.
Publicado: (2017) -
Aversion to ambiguity and model misspecification in dynamic stochastic environments
por: Hansen, Lars Peter, et al.
Publicado: (2018)