Cargando…
Mass spectrometric peptide mapping analysis and structural characterization of dihydrodiol dehydrogenase isoenzymes.
The direct molecular weight determination and structural analysis of polypeptides and peptide mixtures have become amenable by the recent development of fast atom bombardment (FABMS) and 252Cf-plasma desorption (PDMS) mass spectrometry. FABMS and PDMS peptide mapping, i.e., the direct analysis of pe...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
1990
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1568017/ https://www.ncbi.nlm.nih.gov/pubmed/2272334 |
_version_ | 1782129921586364416 |
---|---|
author | Gauss, C Klein, J Post, K Suckau, D Schneider, K Thomas, H Oesch, F Przybylski, M |
author_facet | Gauss, C Klein, J Post, K Suckau, D Schneider, K Thomas, H Oesch, F Przybylski, M |
author_sort | Gauss, C |
collection | PubMed |
description | The direct molecular weight determination and structural analysis of polypeptides and peptide mixtures have become amenable by the recent development of fast atom bombardment (FABMS) and 252Cf-plasma desorption (PDMS) mass spectrometry. FABMS and PDMS peptide mapping, i.e., the direct analysis of peptide mixtures resulting from proteolytic digestion, have been developed as powerful methods for the structural characterization of epoxide-metabolizing isoenzymes. The major advantage of this approach is provided by the selectivity of the endoproteolytic cleavage, combined with the specific and accurate molecular weight determination of complex digest mixtures containing peptides up to several thousands daltons in size. Furthermore, the mass spectrometric peptide mapping analysis can be combined with a range of protein-chemical modification reactions and with sequential degradation such as by carboxypeptidases. Both FABMS and PDMS peptide mapping have already been successfully applied to the structural differentiation of glutathione transferase and epoxide hydrolase isoenzymes in cases where references sequence data for at least one isoenzyme form was available. In the application described here, for a series of dihydrodiol dehydrogenase (DDH) isoenzymes with hitherto undetermined primary structures, a direct correlation between the structural differentiation from peptide mapping data and differences in their substrate specificities could be demonstrated. The mass spectrometric peptide mapping analysis of isoenzymes proved to be an efficient basis for the elucidation of the structure of one major DDH isoenzyme form; partial sequence data for this protein are reported. |
format | Text |
id | pubmed-1568017 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1990 |
record_format | MEDLINE/PubMed |
spelling | pubmed-15680172006-09-18 Mass spectrometric peptide mapping analysis and structural characterization of dihydrodiol dehydrogenase isoenzymes. Gauss, C Klein, J Post, K Suckau, D Schneider, K Thomas, H Oesch, F Przybylski, M Environ Health Perspect Research Article The direct molecular weight determination and structural analysis of polypeptides and peptide mixtures have become amenable by the recent development of fast atom bombardment (FABMS) and 252Cf-plasma desorption (PDMS) mass spectrometry. FABMS and PDMS peptide mapping, i.e., the direct analysis of peptide mixtures resulting from proteolytic digestion, have been developed as powerful methods for the structural characterization of epoxide-metabolizing isoenzymes. The major advantage of this approach is provided by the selectivity of the endoproteolytic cleavage, combined with the specific and accurate molecular weight determination of complex digest mixtures containing peptides up to several thousands daltons in size. Furthermore, the mass spectrometric peptide mapping analysis can be combined with a range of protein-chemical modification reactions and with sequential degradation such as by carboxypeptidases. Both FABMS and PDMS peptide mapping have already been successfully applied to the structural differentiation of glutathione transferase and epoxide hydrolase isoenzymes in cases where references sequence data for at least one isoenzyme form was available. In the application described here, for a series of dihydrodiol dehydrogenase (DDH) isoenzymes with hitherto undetermined primary structures, a direct correlation between the structural differentiation from peptide mapping data and differences in their substrate specificities could be demonstrated. The mass spectrometric peptide mapping analysis of isoenzymes proved to be an efficient basis for the elucidation of the structure of one major DDH isoenzyme form; partial sequence data for this protein are reported. 1990-08 /pmc/articles/PMC1568017/ /pubmed/2272334 Text en |
spellingShingle | Research Article Gauss, C Klein, J Post, K Suckau, D Schneider, K Thomas, H Oesch, F Przybylski, M Mass spectrometric peptide mapping analysis and structural characterization of dihydrodiol dehydrogenase isoenzymes. |
title | Mass spectrometric peptide mapping analysis and structural characterization of dihydrodiol dehydrogenase isoenzymes. |
title_full | Mass spectrometric peptide mapping analysis and structural characterization of dihydrodiol dehydrogenase isoenzymes. |
title_fullStr | Mass spectrometric peptide mapping analysis and structural characterization of dihydrodiol dehydrogenase isoenzymes. |
title_full_unstemmed | Mass spectrometric peptide mapping analysis and structural characterization of dihydrodiol dehydrogenase isoenzymes. |
title_short | Mass spectrometric peptide mapping analysis and structural characterization of dihydrodiol dehydrogenase isoenzymes. |
title_sort | mass spectrometric peptide mapping analysis and structural characterization of dihydrodiol dehydrogenase isoenzymes. |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1568017/ https://www.ncbi.nlm.nih.gov/pubmed/2272334 |
work_keys_str_mv | AT gaussc massspectrometricpeptidemappinganalysisandstructuralcharacterizationofdihydrodioldehydrogenaseisoenzymes AT kleinj massspectrometricpeptidemappinganalysisandstructuralcharacterizationofdihydrodioldehydrogenaseisoenzymes AT postk massspectrometricpeptidemappinganalysisandstructuralcharacterizationofdihydrodioldehydrogenaseisoenzymes AT suckaud massspectrometricpeptidemappinganalysisandstructuralcharacterizationofdihydrodioldehydrogenaseisoenzymes AT schneiderk massspectrometricpeptidemappinganalysisandstructuralcharacterizationofdihydrodioldehydrogenaseisoenzymes AT thomash massspectrometricpeptidemappinganalysisandstructuralcharacterizationofdihydrodioldehydrogenaseisoenzymes AT oeschf massspectrometricpeptidemappinganalysisandstructuralcharacterizationofdihydrodioldehydrogenaseisoenzymes AT przybylskim massspectrometricpeptidemappinganalysisandstructuralcharacterizationofdihydrodioldehydrogenaseisoenzymes |