Cargando…

Assessment of spatial variation of risks in small populations.

Often environmental hazards are assessed by examining the spatial variation of disease-specific mortality or morbidity rates. These rates, when estimated for small local populations, can have a high degree of random variation or uncertainty associated with them. If those rate estimates are used to p...

Descripción completa

Detalles Bibliográficos
Autores principales: Riggan, W B, Manton, K G, Creason, J P, Woodbury, M A, Stallard, E
Formato: Texto
Lenguaje:English
Publicado: 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1568243/
https://www.ncbi.nlm.nih.gov/pubmed/1820268
Descripción
Sumario:Often environmental hazards are assessed by examining the spatial variation of disease-specific mortality or morbidity rates. These rates, when estimated for small local populations, can have a high degree of random variation or uncertainty associated with them. If those rate estimates are used to prioritize environmental clean-up actions or to allocate resources, then those decisions may be influenced by this high degree of uncertainty. Unfortunately, the effect of this uncertainty is not to add "random noise" into the decision-making process, but to systematically bias action toward the smallest populations where uncertainty is greatest and where extreme high and low rate deviations are most likely to be manifest by chance. We present a statistical procedure for adjusting rate estimates for differences in variability due to differentials in local area population sizes. Such adjustments produce rate estimates for areas that have better properties than the unadjusted rates for use in making statistically based decisions about the entire set of areas. Examples are provided for county variation in bladder, stomach, and lung cancer mortality rates for U.S. white males for the period 1970 to 1979.