Cargando…

Protection against chemical-induced lung injury by inhibition of pulmonary cytochrome P-450.

Protection afforded by trialkyl phosphorothionates against the lung injury caused by trialkyl phosphorothiolates probably results from the inhibition by the P = S moiety of the thionates, of one or more pulmonary cytochrome P-450 isozymes. The aromatic hydrocarbons p-xylene and pseudocumene also pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Verschoyle, R D, Dinsdale, D
Formato: Texto
Lenguaje:English
Publicado: 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1568337/
https://www.ncbi.nlm.nih.gov/pubmed/2384072
_version_ 1782129991749730304
author Verschoyle, R D
Dinsdale, D
author_facet Verschoyle, R D
Dinsdale, D
author_sort Verschoyle, R D
collection PubMed
description Protection afforded by trialkyl phosphorothionates against the lung injury caused by trialkyl phosphorothiolates probably results from the inhibition by the P = S moiety of the thionates, of one or more pulmonary cytochrome P-450 isozymes. The aromatic hydrocarbons p-xylene and pseudocumene also protect against this injury and inhibit some P-450 isozymes, but by a different mechanism. OOS-Trimethylphosphorothionate and p-xylene were compared as protective agents against the effect of OOS-trimethylphosphorothiolate and two other lung toxins ipomeanol and 1-nitronaphthalene that are known to be activated by cytochrome P-450. The effects of these protective compounds, in vivo, on pulmonary cytochrome P-450 activity were also determined. Both compounds inhibited pentoxyresorufin O-deethylase activity, but not ethoxyresorufin O-deethylase. The phosphorothionate was most effective against lung injury caused by the phosphorothiolates and 1-nitronaphthalene, whereas p-xylene was much more effective against ipomeanol. beta-Naphthoflavone, which induces pulmonary ethoxyresorufin O-deethylase activity, did not protect against phosphorothiolate or 1-nitronaphthalene injury, and it was only marginally effective in decreasing the toxicity of ipomeanol.
format Text
id pubmed-1568337
institution National Center for Biotechnology Information
language English
publishDate 1990
record_format MEDLINE/PubMed
spelling pubmed-15683372006-09-18 Protection against chemical-induced lung injury by inhibition of pulmonary cytochrome P-450. Verschoyle, R D Dinsdale, D Environ Health Perspect Research Article Protection afforded by trialkyl phosphorothionates against the lung injury caused by trialkyl phosphorothiolates probably results from the inhibition by the P = S moiety of the thionates, of one or more pulmonary cytochrome P-450 isozymes. The aromatic hydrocarbons p-xylene and pseudocumene also protect against this injury and inhibit some P-450 isozymes, but by a different mechanism. OOS-Trimethylphosphorothionate and p-xylene were compared as protective agents against the effect of OOS-trimethylphosphorothiolate and two other lung toxins ipomeanol and 1-nitronaphthalene that are known to be activated by cytochrome P-450. The effects of these protective compounds, in vivo, on pulmonary cytochrome P-450 activity were also determined. Both compounds inhibited pentoxyresorufin O-deethylase activity, but not ethoxyresorufin O-deethylase. The phosphorothionate was most effective against lung injury caused by the phosphorothiolates and 1-nitronaphthalene, whereas p-xylene was much more effective against ipomeanol. beta-Naphthoflavone, which induces pulmonary ethoxyresorufin O-deethylase activity, did not protect against phosphorothiolate or 1-nitronaphthalene injury, and it was only marginally effective in decreasing the toxicity of ipomeanol. 1990-04 /pmc/articles/PMC1568337/ /pubmed/2384072 Text en
spellingShingle Research Article
Verschoyle, R D
Dinsdale, D
Protection against chemical-induced lung injury by inhibition of pulmonary cytochrome P-450.
title Protection against chemical-induced lung injury by inhibition of pulmonary cytochrome P-450.
title_full Protection against chemical-induced lung injury by inhibition of pulmonary cytochrome P-450.
title_fullStr Protection against chemical-induced lung injury by inhibition of pulmonary cytochrome P-450.
title_full_unstemmed Protection against chemical-induced lung injury by inhibition of pulmonary cytochrome P-450.
title_short Protection against chemical-induced lung injury by inhibition of pulmonary cytochrome P-450.
title_sort protection against chemical-induced lung injury by inhibition of pulmonary cytochrome p-450.
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1568337/
https://www.ncbi.nlm.nih.gov/pubmed/2384072
work_keys_str_mv AT verschoylerd protectionagainstchemicalinducedlunginjurybyinhibitionofpulmonarycytochromep450
AT dinsdaled protectionagainstchemicalinducedlunginjurybyinhibitionofpulmonarycytochromep450