Cargando…
Complex mixtures in industrial workspaces: lessons for indoor air quality evaluations.
Acceptable occupational exposure levels for hundreds of airborne concentrations of dusts, vapors, fumes, and gases have been set by consensus organizations and regulatory bodies for decades. These levels have established tremendous precedent and are tempting reference values in the relatively new fi...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
1991
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1568416/ https://www.ncbi.nlm.nih.gov/pubmed/1821384 |
Sumario: | Acceptable occupational exposure levels for hundreds of airborne concentrations of dusts, vapors, fumes, and gases have been set by consensus organizations and regulatory bodies for decades. These levels have established tremendous precedent and are tempting reference values in the relatively new field of indoor air quality evaluations where validated criteria are greatly needed. The American Conference of Government Industrial Hygienists (ACGIH) has been the most visible and productive group setting these guidelines for industrial exposure. The ACGIH Chemical Substances Committee has published an annual list of threshold limit values (TLVs) for more than 40 years. Currently the list covers more than 400 substances. In 1989, the Occupational Safety and Health Administration (OSHA) published updated permissible exposure limits (PELs) for approximately 600 substances. Most PELs before this update were adopted from the 1968 ACGIH list of TLVs and consensus standards of the American Standards Association. This OSHA update has resulted in reductions of 212 PELs and the addition of 164 new levels. The magnitude of the problem of protecting workers can be seen by the small fraction that the OSHA PELs represent of the more than 60,000 entries in the National Institute for Occupational Safety and Health's Registry of Toxic Effects of Chemical Substances. None of these levels, whether guidelines or regulatory requirements, are established based on any possible synergistic effect with other chemicals. The only guidance given by the ACGIH for synergistic effects is that such cases must be determined individually. Clearly, there are major drawbacks in using occupational standards and guidelines for evaluating the health effects of chemical agents that can be found in office settings, often in concentrations orders of magnitude less than what is routinely measured in the workplace. These guidelines are even less valuable when the concern is the complex mixing of chemicals in nonoccupational environments. |
---|