Cargando…
A comparison of univariate and multivariate gene selection techniques for classification of cancer datasets
BACKGROUND: Gene selection is an important step when building predictors of disease state based on gene expression data. Gene selection generally improves performance and identifies a relevant subset of genes. Many univariate and multivariate gene selection approaches have been proposed. Frequently...
Autores principales: | Lai, Carmen, Reinders, Marcel JT, van't Veer, Laura J, Wessels, Lodewyk FA |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1569875/ https://www.ncbi.nlm.nih.gov/pubmed/16670007 http://dx.doi.org/10.1186/1471-2105-7-235 |
Ejemplares similares
-
Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability
por: van Vliet, Martin H, et al.
Publicado: (2008) -
SIRAC: Supervised Identification of Regions of Aberration in aCGH datasets
por: Lai, Carmen, et al.
Publicado: (2007) -
Knowledge driven decomposition of tumor expression profiles
por: van Vliet, Martin H, et al.
Publicado: (2009) -
A scale-space method for detecting recurrent DNA copy number changes with analytical false discovery rate control
por: van Dyk, Ewald, et al.
Publicado: (2013) -
Comparison of univariate and multivariate linkage analysis of traits related to hypertension
por: Gray-McGuire, Courtney, et al.
Publicado: (2009)