Cargando…
Individualized markers optimize class prediction of microarray data
BACKGROUND: Identification of molecular markers for the classification of microarray data is a challenging task. Despite the evident dissimilarity in various characteristics of biological samples belonging to the same category, most of the marker – selection and classification methods do not conside...
Autores principales: | Pavlidis, Pavlos, Poirazi, Panayiota |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1569876/ https://www.ncbi.nlm.nih.gov/pubmed/16842618 http://dx.doi.org/10.1186/1471-2105-7-345 |
Ejemplares similares
-
Dendrites and Efficiency: Optimizing Performance and Resource Utilization
por: Makarov, Roman, et al.
Publicado: (2023) -
Predictive Features of Persistent Activity Emergence in Regular Spiking and Intrinsic Bursting Model Neurons
por: Sidiropoulou, Kyriaki, et al.
Publicado: (2012) -
Meta-coexpression conservation analysis of microarray data: a "subset" approach provides insight into brain-derived neurotrophic factor regulation
por: Aid-Pavlidis, Tamara, et al.
Publicado: (2009) -
MiRduplexSVM: A High-Performing MiRNA-Duplex Prediction and Evaluation Methodology
por: Karathanasis, Nestoras, et al.
Publicado: (2015) -
Dendritic nonlinearities enable PFC microcircuits to serve as predictive modules of persistent activity
por: Papoutsi, Athanasia, et al.
Publicado: (2013)