Cargando…

Stratus Not Altocumulus: A New View of the Yeast Protein Interaction Network

Systems biology approaches can reveal intermediary levels of organization between genotype and phenotype that often underlie biological phenomena such as polygenic effects and protein dispensability. An important conceptualization is the module, which is loosely defined as a cohort of proteins that...

Descripción completa

Detalles Bibliográficos
Autores principales: Batada, Nizar N, Reguly, Teresa, Breitkreutz, Ashton, Boucher, Lorrie, Breitkreutz, Bobby-Joe, Hurst, Laurence D, Tyers, Mike
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1569888/
https://www.ncbi.nlm.nih.gov/pubmed/16984220
http://dx.doi.org/10.1371/journal.pbio.0040317
_version_ 1782130229942157312
author Batada, Nizar N
Reguly, Teresa
Breitkreutz, Ashton
Boucher, Lorrie
Breitkreutz, Bobby-Joe
Hurst, Laurence D
Tyers, Mike
author_facet Batada, Nizar N
Reguly, Teresa
Breitkreutz, Ashton
Boucher, Lorrie
Breitkreutz, Bobby-Joe
Hurst, Laurence D
Tyers, Mike
author_sort Batada, Nizar N
collection PubMed
description Systems biology approaches can reveal intermediary levels of organization between genotype and phenotype that often underlie biological phenomena such as polygenic effects and protein dispensability. An important conceptualization is the module, which is loosely defined as a cohort of proteins that perform a dedicated cellular task. Based on a computational analysis of limited interaction datasets in the budding yeast Saccharomyces cerevisiae, it has been suggested that the global protein interaction network is segregated such that highly connected proteins, called hubs, tend not to link to each other. Moreover, it has been suggested that hubs fall into two distinct classes: “party” hubs are co-expressed and co-localized with their partners, whereas “date” hubs interact with incoherently expressed and diversely localized partners, and thereby cohere disparate parts of the global network. This structure may be compared with altocumulus clouds, i.e., cotton ball–like structures sparsely connected by thin wisps. However, this organization might reflect a small and/or biased sample set of interactions. In a multi-validated high-confidence (HC) interaction network, assembled from all extant S. cerevisiae interaction data, including recently available proteome-wide interaction data and a large set of reliable literature-derived interactions, we find that hub–hub interactions are not suppressed. In fact, the number of interactions a hub has with other hubs is a good predictor of whether a hub protein is essential or not. We find that date hubs are neither required for network tolerance to node deletion, nor do date hubs have distinct biological attributes compared to other hubs. Date and party hubs do not, for example, evolve at different rates. Our analysis suggests that the organization of global protein interaction network is highly interconnected and hence interdependent, more like the continuous dense aggregations of stratus clouds than the segregated configuration of altocumulus clouds. If the network is configured in a stratus format, cross-talk between proteins is potentially a major source of noise. In turn, control of the activity of the most highly connected proteins may be vital. Indeed, we find that a fluctuation in steady-state levels of the most connected proteins is minimized.
format Text
id pubmed-1569888
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-15698882006-09-29 Stratus Not Altocumulus: A New View of the Yeast Protein Interaction Network Batada, Nizar N Reguly, Teresa Breitkreutz, Ashton Boucher, Lorrie Breitkreutz, Bobby-Joe Hurst, Laurence D Tyers, Mike PLoS Biol Research Article Systems biology approaches can reveal intermediary levels of organization between genotype and phenotype that often underlie biological phenomena such as polygenic effects and protein dispensability. An important conceptualization is the module, which is loosely defined as a cohort of proteins that perform a dedicated cellular task. Based on a computational analysis of limited interaction datasets in the budding yeast Saccharomyces cerevisiae, it has been suggested that the global protein interaction network is segregated such that highly connected proteins, called hubs, tend not to link to each other. Moreover, it has been suggested that hubs fall into two distinct classes: “party” hubs are co-expressed and co-localized with their partners, whereas “date” hubs interact with incoherently expressed and diversely localized partners, and thereby cohere disparate parts of the global network. This structure may be compared with altocumulus clouds, i.e., cotton ball–like structures sparsely connected by thin wisps. However, this organization might reflect a small and/or biased sample set of interactions. In a multi-validated high-confidence (HC) interaction network, assembled from all extant S. cerevisiae interaction data, including recently available proteome-wide interaction data and a large set of reliable literature-derived interactions, we find that hub–hub interactions are not suppressed. In fact, the number of interactions a hub has with other hubs is a good predictor of whether a hub protein is essential or not. We find that date hubs are neither required for network tolerance to node deletion, nor do date hubs have distinct biological attributes compared to other hubs. Date and party hubs do not, for example, evolve at different rates. Our analysis suggests that the organization of global protein interaction network is highly interconnected and hence interdependent, more like the continuous dense aggregations of stratus clouds than the segregated configuration of altocumulus clouds. If the network is configured in a stratus format, cross-talk between proteins is potentially a major source of noise. In turn, control of the activity of the most highly connected proteins may be vital. Indeed, we find that a fluctuation in steady-state levels of the most connected proteins is minimized. Public Library of Science 2006-10 2006-09-19 /pmc/articles/PMC1569888/ /pubmed/16984220 http://dx.doi.org/10.1371/journal.pbio.0040317 Text en © 2006 Batada et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Batada, Nizar N
Reguly, Teresa
Breitkreutz, Ashton
Boucher, Lorrie
Breitkreutz, Bobby-Joe
Hurst, Laurence D
Tyers, Mike
Stratus Not Altocumulus: A New View of the Yeast Protein Interaction Network
title Stratus Not Altocumulus: A New View of the Yeast Protein Interaction Network
title_full Stratus Not Altocumulus: A New View of the Yeast Protein Interaction Network
title_fullStr Stratus Not Altocumulus: A New View of the Yeast Protein Interaction Network
title_full_unstemmed Stratus Not Altocumulus: A New View of the Yeast Protein Interaction Network
title_short Stratus Not Altocumulus: A New View of the Yeast Protein Interaction Network
title_sort stratus not altocumulus: a new view of the yeast protein interaction network
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1569888/
https://www.ncbi.nlm.nih.gov/pubmed/16984220
http://dx.doi.org/10.1371/journal.pbio.0040317
work_keys_str_mv AT batadanizarn stratusnotaltocumulusanewviewoftheyeastproteininteractionnetwork
AT regulyteresa stratusnotaltocumulusanewviewoftheyeastproteininteractionnetwork
AT breitkreutzashton stratusnotaltocumulusanewviewoftheyeastproteininteractionnetwork
AT boucherlorrie stratusnotaltocumulusanewviewoftheyeastproteininteractionnetwork
AT breitkreutzbobbyjoe stratusnotaltocumulusanewviewoftheyeastproteininteractionnetwork
AT hurstlaurenced stratusnotaltocumulusanewviewoftheyeastproteininteractionnetwork
AT tyersmike stratusnotaltocumulusanewviewoftheyeastproteininteractionnetwork