Cargando…

Key Issues in the Role of Peroxisome Proliferator–Activated Receptor Agonism and Cell Signaling in Trichloroethylene Toxicity

Peroxisome proliferator–activated receptor α (PPARα) is thought to be involved in several different diseases, toxic responses, and receptor pathways. The U.S. Environmental Protection Agency 2001 draft trichloroethylene (TCE) risk assessment concluded that although PPAR may play a role in liver tumo...

Descripción completa

Detalles Bibliográficos
Autores principales: Keshava, Nagalakshmi, Caldwell, Jane C.
Formato: Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1570084/
https://www.ncbi.nlm.nih.gov/pubmed/16966106
http://dx.doi.org/10.1289/ehp.8693
Descripción
Sumario:Peroxisome proliferator–activated receptor α (PPARα) is thought to be involved in several different diseases, toxic responses, and receptor pathways. The U.S. Environmental Protection Agency 2001 draft trichloroethylene (TCE) risk assessment concluded that although PPAR may play a role in liver tumor induction, the role of its activation and the sequence of subsequent events important to tumorigenesis are not well defined, particularly because of uncertainties concerning the extraperoxisomal effects. In this article, which is part of a mini-monograph on key issues in the health risk assessment of TCE, we summarize some of the scientific literature published since that time on the effects and actions of PPARα that help inform and illustrate the key scientific questions relevant to TCE risk assessment. Recent analyses of the role of PPARα in gene expression changes caused by TCE and its metabolites provide only limited data for comparison with other PPARα agonists, particularly given the difficulties in interpreting results involving PPARα knockout mice. Moreover, the increase in data over the last 5 years from the broader literature on PPARα agonists presents a more complex array of extraperoxisomal effects and actions, suggesting the possibility that PPARα may be involved in modes of action (MOAs) not only for liver tumors but also for other effects of TCE and its metabolites. In summary, recent studies support the conclusion that determinations of the human relevance and susceptibility to PPARα-related MOA(s) of TCE-induced effects cannot rely on inferences regarding peroxisome proliferation per se and require a better understanding of the interplay of extraperoxisomal events after PPARα agonism.