Cargando…

Sampling Realistic Protein Conformations Using Local Structural Bias

The prediction of protein structure from sequence remains a major unsolved problem in biology. The most successful protein structure prediction methods make use of a divide-and-conquer strategy to attack the problem: a conformational sampling method generates plausible candidate structures, which ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Hamelryck, Thomas, Kent, John T, Krogh, Anders
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1570370/
https://www.ncbi.nlm.nih.gov/pubmed/17002495
http://dx.doi.org/10.1371/journal.pcbi.0020131
Descripción
Sumario:The prediction of protein structure from sequence remains a major unsolved problem in biology. The most successful protein structure prediction methods make use of a divide-and-conquer strategy to attack the problem: a conformational sampling method generates plausible candidate structures, which are subsequently accepted or rejected using an energy function. Conceptually, this often corresponds to separating local structural bias from the long-range interactions that stabilize the compact, native state. However, sampling protein conformations that are compatible with the local structural bias encoded in a given protein sequence is a long-standing open problem, especially in continuous space. We describe an elegant and mathematically rigorous method to do this, and show that it readily generates native-like protein conformations simply by enforcing compactness. Our results have far-reaching implications for protein structure prediction, determination, simulation, and design.