Cargando…

An object simulation model for modeling hypothetical disease epidemics – EpiFlex

BACKGROUND: EpiFlex is a flexible, easy to use computer model for a single computer, intended to be operated by one user who need not be an expert. Its purpose is to study in-silico the epidemic behavior of a wide variety of diseases, both known and theoretical, by simulating their spread at the lev...

Descripción completa

Detalles Bibliográficos
Autor principal: Hanley, Brian
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1570461/
https://www.ncbi.nlm.nih.gov/pubmed/16928271
http://dx.doi.org/10.1186/1742-4682-3-32
Descripción
Sumario:BACKGROUND: EpiFlex is a flexible, easy to use computer model for a single computer, intended to be operated by one user who need not be an expert. Its purpose is to study in-silico the epidemic behavior of a wide variety of diseases, both known and theoretical, by simulating their spread at the level of individuals contracting and infecting others. To understand the system fully, this paper must be read together in conjunction with study of the software and its results. EpiFlex is evaluated using results from modeling influenza A epidemics and comparing them with a variety of field data sources and other types of modeling. EpiFlex is an object-oriented Monte Carlo system, allocating entities to correspond to individuals, disease vectors, diseases, and the locations that hosts may inhabit. EpiFlex defines eight different contact types available for a disease. Contacts occur inside locations within the model. Populations are composed of demographic groups, each of which has a cycle of movement between locations. Within locations, superspreading is defined by skewing of contact distributions. RESULTS: EpiFlex indicates three phenomena of interest for public health: (1) R(0 )is variable, and the smaller the population, the larger the infected fraction within that population will be; (2) significant compression/synchronization between cities by a factor of roughly 2 occurs between the early incubation phase of a multi-city epidemic and the major manifestation phase; (3) if better true morbidity data were available, more asymptomatic hosts would be seen to spread disease than we currently believe is the case for influenza. These results suggest that field research to study such phenomena, while expensive, should be worthwhile. CONCLUSION: Since EpiFlex shows all stages of disease progression, detailed insight into the progress of epidemics is possible. EpiFlex shows the characteristic multimodality and apparently random variation characteristic of real world data, but does so as an emergent property of a carefully constructed model of disease dynamics and is not simply a stochastic system. EpiFlex can provide a better understanding of infectious diseases and strategies for response.