Cargando…
Identifying genes that contribute most to good classification in microarrays
BACKGROUND: The goal of most microarray studies is either the identification of genes that are most differentially expressed or the creation of a good classification rule. The disadvantage of the former is that it ignores the importance of gene interactions; the disadvantage of the latter is that it...
Autores principales: | Baker, Stuart G, Kramer, Barnett S |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574352/ https://www.ncbi.nlm.nih.gov/pubmed/16959042 http://dx.doi.org/10.1186/1471-2105-7-407 |
Ejemplares similares
-
Simple and flexible classification of gene expression microarrays via Swirls and Ripples
por: Baker, Stuart G
Publicado: (2010) -
Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes
por: Jirapech-Umpai, Thanyaluk, et al.
Publicado: (2005) -
Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction
por: Colombo, Pierre-Emmanuel, et al.
Publicado: (2011) -
Classification of microarray data using gene networks
por: Rapaport, Franck, et al.
Publicado: (2007) -
Classification across gene expression microarray studies
por: Buness, Andreas, et al.
Publicado: (2009)