Cargando…
CRNPRED: highly accurate prediction of one-dimensional protein structures by large-scale critical random networks
BACKGROUND: One-dimensional protein structures such as secondary structures or contact numbers are useful for three-dimensional structure prediction and helpful for intuitive understanding of the sequence-structure relationship. Accurate prediction methods will serve as a basis for these and other p...
Autores principales: | Kinjo, Akira R, Nishikawa, Ken |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1578593/ https://www.ncbi.nlm.nih.gov/pubmed/16952323 http://dx.doi.org/10.1186/1471-2105-7-401 |
Ejemplares similares
-
Predicting secondary structures, contact numbers, and residue-wise contact orders of native protein structures from amino acid sequences using critical random networks
por: Kinjo, Akira R., et al.
Publicado: (2005) -
SNAVI: Desktop application for analysis and visualization of large-scale signaling networks
por: Ma'ayan, Avi, et al.
Publicado: (2009) -
CLAST: CUDA implemented large-scale alignment search tool
por: Yano, Masahiro, et al.
Publicado: (2014) -
DIAMIN: a software library for the distributed analysis of large-scale molecular interaction networks
por: Di Rocco, Lorenzo, et al.
Publicado: (2022) -
Kssd: sequence dimensionality reduction by k-mer substring space sampling enables real-time large-scale datasets analysis
por: Yi, Huiguang, et al.
Publicado: (2021)