Cargando…
Artificial ants deposit pheromone to search for regulatory DNA elements
BACKGROUND: Identification of transcription-factor binding motifs (DNA sequences) can be formulated as a combinatorial problem, where an efficient algorithm is indispensable to predict the role of multiple binding motifs. An ant algorithm is a biology-inspired computational technique, through which...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1586019/ https://www.ncbi.nlm.nih.gov/pubmed/16942615 http://dx.doi.org/10.1186/1471-2164-7-221 |
Sumario: | BACKGROUND: Identification of transcription-factor binding motifs (DNA sequences) can be formulated as a combinatorial problem, where an efficient algorithm is indispensable to predict the role of multiple binding motifs. An ant algorithm is a biology-inspired computational technique, through which a combinatorial problem is solved by mimicking the behavior of social insects such as ants. We developed a unique version of ant algorithms to select a set of binding motifs by considering a potential contribution of each of all random DNA sequences of 4- to 7-bp in length. RESULTS: Human chondrogenesis was used as a model system. The results revealed that the ant algorithm was able to identify biologically known binding motifs in chondrogenesis such as AP-1, NFκB, and sox9. Some of the predicted motifs were identical to those previously derived with the genetic algorithm. Unlike the genetic algorithm, however, the ant algorithm was able to evaluate a contribution of individual binding motifs as a spectrum of distributed information and predict core consensus motifs from a wider DNA pool. CONCLUSION: The ant algorithm offers an efficient, reproducible procedure to predict a role of individual transcription-factor binding motifs using a unique definition of artificial ants. |
---|