Cargando…
Inhalation of the Rho-kinase inhibitor Y-27632 reverses allergen-induced airway hyperresponsiveness after the early and late asthmatic reaction
BACKGROUND: In guinea pigs, we have previously demonstrated that the contribution of Rho-kinase to airway responsiveness in vivo and ex vivo is enhanced after active sensitization with ovalbumin (OA). Using conscious, unrestrained OA-sensitized guina pigs, we now investigated the role of Rho-kinase...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1586199/ https://www.ncbi.nlm.nih.gov/pubmed/17002806 http://dx.doi.org/10.1186/1465-9921-7-121 |
Sumario: | BACKGROUND: In guinea pigs, we have previously demonstrated that the contribution of Rho-kinase to airway responsiveness in vivo and ex vivo is enhanced after active sensitization with ovalbumin (OA). Using conscious, unrestrained OA-sensitized guina pigs, we now investigated the role of Rho-kinase in the development of airway hyperresponsiveness (AHR) after the allergen-induced early (EAR) and late asthmatic reaction (LAR) in vivo. METHODS: Histamine and PGF(2α )PC(100)-values (provocation concentrations causing 100% increase in pleural pressure) were assessed before OA-challenge (basal airway responsiveness) and after the OA-induced EAR (5 h after challenge) and LAR (23 h after challenge). Thirty minutes later, saline or the specific Rho-kinase inhibitor Y-27632 (5 mM, nebulizer concentration) were nebulized, after which PC(100)-values were reassessed. RESULTS: In contrast to saline, Y-27632 inhalation significantly decreased the basal responsiveness toward histamine and PGF(2α )before OA-challenge, as indicated by increased PC(100 )-values. Both after the allergen-induced EAR and LAR, AHR to histamine and PGF(2α )was present, which was reversed by Y-27632 inhalation. Moreover, there was an increased effectiveness of Y-27632 to reduce airway responsiveness to histamine and PGF(2α )after the EAR and LAR as compared to pre-challenge conditions. Saline inhalations did not affect histamine or PGF(2α )PC(100)-values at all. Interestingly, under all conditions Y-27632 was significantly more effective in reducing airway responsiveness to PGF(2α )as compared to histamine. Also, there was a clear tendency (P = 0.08) to a more pronounced degree of AHR after the EAR for PGF(2α )than for histamine. CONCLUSION: The results indicate that inhalation of the Rho-kinase inhibitor Y-27632 causes a considerable bronchoprotection to both histamine and PGF(2α). Moreover, the results are indicative of a differential involvement of Rho-kinase in the agonist-induced airway obstruction in vivo. Increased Rho-kinase activity contributes to the allergen-induced AHR to histamine and PGF(2α )after both the EAR and the LAR, which is effectively reversed by inhalation of Y-27632. Therefore, Rho-kinase can be considered as a potential pharmacotherapeutical target in allergic asthma. |
---|