Cargando…
Coding limits on the number of transcription factors
BACKGROUND: Transcription factor proteins bind specific DNA sequences to control the expression of genes. They contain DNA binding domains which belong to several super-families, each with a specific mechanism of DNA binding. The total number of transcription factors encoded in a genome increases wi...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1590034/ https://www.ncbi.nlm.nih.gov/pubmed/16984633 http://dx.doi.org/10.1186/1471-2164-7-239 |
_version_ | 1782130363513962496 |
---|---|
author | Itzkovitz, Shalev Tlusty, Tsvi Alon, Uri |
author_facet | Itzkovitz, Shalev Tlusty, Tsvi Alon, Uri |
author_sort | Itzkovitz, Shalev |
collection | PubMed |
description | BACKGROUND: Transcription factor proteins bind specific DNA sequences to control the expression of genes. They contain DNA binding domains which belong to several super-families, each with a specific mechanism of DNA binding. The total number of transcription factors encoded in a genome increases with the number of genes in the genome. Here, we examined the number of transcription factors from each super-family in diverse organisms. RESULTS: We find that the number of transcription factors from most super-families appears to be bounded. For example, the number of winged helix factors does not generally exceed 300, even in very large genomes. The magnitude of the maximal number of transcription factors from each super-family seems to correlate with the number of DNA bases effectively recognized by the binding mechanism of that super-family. Coding theory predicts that such upper bounds on the number of transcription factors should exist, in order to minimize cross-binding errors between transcription factors. This theory further predicts that factors with similar binding sequences should tend to have similar biological effect, so that errors based on mis-recognition are minimal. We present evidence that transcription factors with similar binding sequences tend to regulate genes with similar biological functions, supporting this prediction. CONCLUSION: The present study suggests limits on the transcription factor repertoire of cells, and suggests coding constraints that might apply more generally to the mapping between binding sites and biological function. |
format | Text |
id | pubmed-1590034 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-15900342006-10-05 Coding limits on the number of transcription factors Itzkovitz, Shalev Tlusty, Tsvi Alon, Uri BMC Genomics Research Article BACKGROUND: Transcription factor proteins bind specific DNA sequences to control the expression of genes. They contain DNA binding domains which belong to several super-families, each with a specific mechanism of DNA binding. The total number of transcription factors encoded in a genome increases with the number of genes in the genome. Here, we examined the number of transcription factors from each super-family in diverse organisms. RESULTS: We find that the number of transcription factors from most super-families appears to be bounded. For example, the number of winged helix factors does not generally exceed 300, even in very large genomes. The magnitude of the maximal number of transcription factors from each super-family seems to correlate with the number of DNA bases effectively recognized by the binding mechanism of that super-family. Coding theory predicts that such upper bounds on the number of transcription factors should exist, in order to minimize cross-binding errors between transcription factors. This theory further predicts that factors with similar binding sequences should tend to have similar biological effect, so that errors based on mis-recognition are minimal. We present evidence that transcription factors with similar binding sequences tend to regulate genes with similar biological functions, supporting this prediction. CONCLUSION: The present study suggests limits on the transcription factor repertoire of cells, and suggests coding constraints that might apply more generally to the mapping between binding sites and biological function. BioMed Central 2006-09-19 /pmc/articles/PMC1590034/ /pubmed/16984633 http://dx.doi.org/10.1186/1471-2164-7-239 Text en Copyright © 2006 Itzkovitz et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Itzkovitz, Shalev Tlusty, Tsvi Alon, Uri Coding limits on the number of transcription factors |
title | Coding limits on the number of transcription factors |
title_full | Coding limits on the number of transcription factors |
title_fullStr | Coding limits on the number of transcription factors |
title_full_unstemmed | Coding limits on the number of transcription factors |
title_short | Coding limits on the number of transcription factors |
title_sort | coding limits on the number of transcription factors |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1590034/ https://www.ncbi.nlm.nih.gov/pubmed/16984633 http://dx.doi.org/10.1186/1471-2164-7-239 |
work_keys_str_mv | AT itzkovitzshalev codinglimitsonthenumberoftranscriptionfactors AT tlustytsvi codinglimitsonthenumberoftranscriptionfactors AT alonuri codinglimitsonthenumberoftranscriptionfactors |