Cargando…
Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes
BACKGROUND: A cluster analysis is the most commonly performed procedure (often regarded as a first step) on a set of gene expression profiles. In most cases, a post hoc analysis is done to see if the genes in the same clusters can be functionally correlated. While past successes of such analyses hav...
Autores principales: | Datta, Susmita, Datta, Somnath |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1590054/ https://www.ncbi.nlm.nih.gov/pubmed/16945146 http://dx.doi.org/10.1186/1471-2105-7-397 |
Ejemplares similares
-
Evaluation of clustering algorithms for gene expression data
por: Datta, Susmita, et al.
Publicado: (2006) -
A statistical framework for differential network analysis from microarray data
por: Gill, Ryan, et al.
Publicado: (2010) -
optCluster: An R Package for Determining the Optimal Clustering Algorithm
por: Sekula, Michael, et al.
Publicado: (2017) -
An adaptive optimal ensemble classifier via bagging and rank aggregation with applications to high dimensional data
por: Datta, Susmita, et al.
Publicado: (2010) -
A sparse Bayesian factor model for the construction of gene co-expression networks from single-cell RNA sequencing count data
por: Sekula, Michael, et al.
Publicado: (2020)