Cargando…
OSCA: a comprehensive open-access system of analysis of posterior capsular opacification
BACKGROUND: This paper presents and tests a comprehensive computerised system of analysis of digital images of posterior capsule opacification (PCO). It updates and expands significantly on a previous presentation to include facilities for selecting user defined central areas and for registering and...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1592309/ https://www.ncbi.nlm.nih.gov/pubmed/16875500 http://dx.doi.org/10.1186/1471-2415-6-30 |
Sumario: | BACKGROUND: This paper presents and tests a comprehensive computerised system of analysis of digital images of posterior capsule opacification (PCO). It updates and expands significantly on a previous presentation to include facilities for selecting user defined central areas and for registering and subsequent merging of images for artefact removal. Also, the program is compiled and thus eliminates the need for specialised additional software. The system is referred to in this paper as the open-access systematic capsule assessment (OSCA). The system is designed to be evidence based, objective and openly available, improving on current systems of analysis. METHODS: Principal features of the OSCA system of analysis are discussed. Flash artefacts are automatically located in two PCO images and the images merged to produce a composite free from these artefacts. For this to be possible the second image has to be manipulated with a registration technique to bring it into alignment with the first. Further image processing and analysis steps use a location-sensitive entropy based texture analysis of PCO. Validity of measuring PCO progression of the whole new system is assessed along with visual significance of scores. Reliability of the system is assessed. RESULTS: Analysis of PCO by the system shows ability to detect early progression of PCO, as well as detection of more visually significant PCO. Images with no clinical PCO produce very low scores in the analysis. Reliability of the system of analysis is demonstrated. CONCLUSION: This system of PCO analysis is evidence-based, objective and clinically useful. It incorporates flash detection and removal as well as location sensitive texture analysis. It provides features and benefits not previously available to most researchers or clinicians. Substantial evidence is provided for this system's validity and reliability. |
---|