Cargando…

LIGSITE(csc): predicting ligand binding sites using the Connolly surface and degree of conservation

BACKGROUND: Identifying pockets on protein surfaces is of great importance for many structure-based drug design applications and protein-ligand docking algorithms. Over the last ten years, many geometric methods for the prediction of ligand-binding sites have been developed. RESULTS: We present LIGS...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Bingding, Schroeder, Michael
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1601958/
https://www.ncbi.nlm.nih.gov/pubmed/16995956
http://dx.doi.org/10.1186/1472-6807-6-19
Descripción
Sumario:BACKGROUND: Identifying pockets on protein surfaces is of great importance for many structure-based drug design applications and protein-ligand docking algorithms. Over the last ten years, many geometric methods for the prediction of ligand-binding sites have been developed. RESULTS: We present LIGSITE(csc), an extension and implementation of the LIGSITE algorithm. LIGSITE(csc )is based on the notion of surface-solvent-surface events and the degree of conservation of the involved surface residues. We compare our algorithm to four other approaches, LIGSITE, CAST, PASS, and SURFNET, and evaluate all on a dataset of 48 unbound/bound structures and 210 bound-structures. LIGSITE(csc )performs slightly better than the other tools and achieves a success rate of 71% and 75%, respectively. CONCLUSION: The use of the Connolly surface leads to slight improvements, the prediction re-ranking by conservation to significant improvements of the binding site predictions. A web server for LIGSITE(csc )and its source code is available at scoppi.biotec.tu-dresden.de/pocket.