Cargando…
Eye and neural defects associated with loss of GDF6
BACKGROUND: In Xenopus the bone morphogenetic protein growth and differentiation factor 6 (GDF6) is expressed at the edge of the neural plate, and within the anterior neural plate including the eye fields. Here we address the role of GDF6 in neural and eye development by morpholino knockdown experim...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1609107/ https://www.ncbi.nlm.nih.gov/pubmed/17010201 http://dx.doi.org/10.1186/1471-213X-6-43 |
_version_ | 1782130463628853248 |
---|---|
author | Hanel, Meredith L Hensey, Carmel |
author_facet | Hanel, Meredith L Hensey, Carmel |
author_sort | Hanel, Meredith L |
collection | PubMed |
description | BACKGROUND: In Xenopus the bone morphogenetic protein growth and differentiation factor 6 (GDF6) is expressed at the edge of the neural plate, and within the anterior neural plate including the eye fields. Here we address the role of GDF6 in neural and eye development by morpholino knockdown experiments. RESULTS: We show that depletion of GDF6 (BMP13) resulted in a reduction in eye size, loss of laminar structure and a reduction in differentiated neural cell types within the retina. This correlated with a reduction in staining for Smad1/5/8 phosphorylation indicating a decrease in GDF6 signalling through loss of phosphorylation of these intracellular mediators of bone morphogenetic protein (BMP) signalling. In addition, the Pax6 expression domain is reduced in size at early optic vesicle stages. Neural cell adhesion molecule (NCAM) is generally reduced in intensity along the neural tube, while in the retina and brain discreet patches of NCAM expression are also lost. GDF6 knock down resulted in an increase in cell death along the neural tube and within the retina as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. CONCLUSION: Our data demonstrate that GDF6 has an important role in neural differentiation in the eye as well as within the central nervous system, and that GDF6 may act in some way to maintain cell survival within the ectoderm, during the normal waves of programmed cell death. |
format | Text |
id | pubmed-1609107 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-16091072006-10-14 Eye and neural defects associated with loss of GDF6 Hanel, Meredith L Hensey, Carmel BMC Dev Biol Research Article BACKGROUND: In Xenopus the bone morphogenetic protein growth and differentiation factor 6 (GDF6) is expressed at the edge of the neural plate, and within the anterior neural plate including the eye fields. Here we address the role of GDF6 in neural and eye development by morpholino knockdown experiments. RESULTS: We show that depletion of GDF6 (BMP13) resulted in a reduction in eye size, loss of laminar structure and a reduction in differentiated neural cell types within the retina. This correlated with a reduction in staining for Smad1/5/8 phosphorylation indicating a decrease in GDF6 signalling through loss of phosphorylation of these intracellular mediators of bone morphogenetic protein (BMP) signalling. In addition, the Pax6 expression domain is reduced in size at early optic vesicle stages. Neural cell adhesion molecule (NCAM) is generally reduced in intensity along the neural tube, while in the retina and brain discreet patches of NCAM expression are also lost. GDF6 knock down resulted in an increase in cell death along the neural tube and within the retina as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. CONCLUSION: Our data demonstrate that GDF6 has an important role in neural differentiation in the eye as well as within the central nervous system, and that GDF6 may act in some way to maintain cell survival within the ectoderm, during the normal waves of programmed cell death. BioMed Central 2006-09-29 /pmc/articles/PMC1609107/ /pubmed/17010201 http://dx.doi.org/10.1186/1471-213X-6-43 Text en Copyright © 2006 Hanel and Hensey; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Hanel, Meredith L Hensey, Carmel Eye and neural defects associated with loss of GDF6 |
title | Eye and neural defects associated with loss of GDF6 |
title_full | Eye and neural defects associated with loss of GDF6 |
title_fullStr | Eye and neural defects associated with loss of GDF6 |
title_full_unstemmed | Eye and neural defects associated with loss of GDF6 |
title_short | Eye and neural defects associated with loss of GDF6 |
title_sort | eye and neural defects associated with loss of gdf6 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1609107/ https://www.ncbi.nlm.nih.gov/pubmed/17010201 http://dx.doi.org/10.1186/1471-213X-6-43 |
work_keys_str_mv | AT hanelmeredithl eyeandneuraldefectsassociatedwithlossofgdf6 AT henseycarmel eyeandneuraldefectsassociatedwithlossofgdf6 |