Cargando…
DNA mechanics as a tool to probe helicase and translocase activity
Helicases and translocases are proteins that use the energy derived from ATP hydrolysis to move along or pump nucleic acid substrates. Single molecule manipulation has proved to be a powerful tool to investigate the mechanochemistry of these motors. Here we first describe the basic mechanical proper...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1616950/ https://www.ncbi.nlm.nih.gov/pubmed/16935884 http://dx.doi.org/10.1093/nar/gkl451 |
_version_ | 1782130494730665984 |
---|---|
author | Lionnet, Timothée Dawid, Alexandre Bigot, Sarah Barre, François-Xavier Saleh, Omar A. Heslot, François Allemand, Jean-François Bensimon, David Croquette, Vincent |
author_facet | Lionnet, Timothée Dawid, Alexandre Bigot, Sarah Barre, François-Xavier Saleh, Omar A. Heslot, François Allemand, Jean-François Bensimon, David Croquette, Vincent |
author_sort | Lionnet, Timothée |
collection | PubMed |
description | Helicases and translocases are proteins that use the energy derived from ATP hydrolysis to move along or pump nucleic acid substrates. Single molecule manipulation has proved to be a powerful tool to investigate the mechanochemistry of these motors. Here we first describe the basic mechanical properties of DNA unraveled by single molecule manipulation techniques. Then we demonstrate how the knowledge of these properties has been used to design single molecule assays to address the enzymatic mechanisms of different translocases. We report on four single molecule manipulation systems addressing the mechanism of different helicases using specifically designed DNA substrates: UvrD enzyme activity detection on a stretched nicked DNA molecule, HCV NS3 helicase unwinding of a RNA hairpin under tension, the observation of RecBCD helicase/nuclease forward and backward motion, and T7 gp4 helicase mediated opening of a synthetic DNA replication fork. We then discuss experiments on two dsDNA translocases: the RuvAB motor studied on its natural substrate, the Holliday junction, and the chromosome-segregation motor FtsK, showing its unusual coupling to DNA supercoiling. |
format | Text |
id | pubmed-1616950 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-16169502006-10-27 DNA mechanics as a tool to probe helicase and translocase activity Lionnet, Timothée Dawid, Alexandre Bigot, Sarah Barre, François-Xavier Saleh, Omar A. Heslot, François Allemand, Jean-François Bensimon, David Croquette, Vincent Nucleic Acids Res Survey and Summary Helicases and translocases are proteins that use the energy derived from ATP hydrolysis to move along or pump nucleic acid substrates. Single molecule manipulation has proved to be a powerful tool to investigate the mechanochemistry of these motors. Here we first describe the basic mechanical properties of DNA unraveled by single molecule manipulation techniques. Then we demonstrate how the knowledge of these properties has been used to design single molecule assays to address the enzymatic mechanisms of different translocases. We report on four single molecule manipulation systems addressing the mechanism of different helicases using specifically designed DNA substrates: UvrD enzyme activity detection on a stretched nicked DNA molecule, HCV NS3 helicase unwinding of a RNA hairpin under tension, the observation of RecBCD helicase/nuclease forward and backward motion, and T7 gp4 helicase mediated opening of a synthetic DNA replication fork. We then discuss experiments on two dsDNA translocases: the RuvAB motor studied on its natural substrate, the Holliday junction, and the chromosome-segregation motor FtsK, showing its unusual coupling to DNA supercoiling. Oxford University Press 2006-09 2006-08-25 /pmc/articles/PMC1616950/ /pubmed/16935884 http://dx.doi.org/10.1093/nar/gkl451 Text en © 2006 The Author(s) |
spellingShingle | Survey and Summary Lionnet, Timothée Dawid, Alexandre Bigot, Sarah Barre, François-Xavier Saleh, Omar A. Heslot, François Allemand, Jean-François Bensimon, David Croquette, Vincent DNA mechanics as a tool to probe helicase and translocase activity |
title | DNA mechanics as a tool to probe helicase and translocase activity |
title_full | DNA mechanics as a tool to probe helicase and translocase activity |
title_fullStr | DNA mechanics as a tool to probe helicase and translocase activity |
title_full_unstemmed | DNA mechanics as a tool to probe helicase and translocase activity |
title_short | DNA mechanics as a tool to probe helicase and translocase activity |
title_sort | dna mechanics as a tool to probe helicase and translocase activity |
topic | Survey and Summary |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1616950/ https://www.ncbi.nlm.nih.gov/pubmed/16935884 http://dx.doi.org/10.1093/nar/gkl451 |
work_keys_str_mv | AT lionnettimothee dnamechanicsasatooltoprobehelicaseandtranslocaseactivity AT dawidalexandre dnamechanicsasatooltoprobehelicaseandtranslocaseactivity AT bigotsarah dnamechanicsasatooltoprobehelicaseandtranslocaseactivity AT barrefrancoisxavier dnamechanicsasatooltoprobehelicaseandtranslocaseactivity AT salehomara dnamechanicsasatooltoprobehelicaseandtranslocaseactivity AT heslotfrancois dnamechanicsasatooltoprobehelicaseandtranslocaseactivity AT allemandjeanfrancois dnamechanicsasatooltoprobehelicaseandtranslocaseactivity AT bensimondavid dnamechanicsasatooltoprobehelicaseandtranslocaseactivity AT croquettevincent dnamechanicsasatooltoprobehelicaseandtranslocaseactivity |