Cargando…

DNA mechanics as a tool to probe helicase and translocase activity

Helicases and translocases are proteins that use the energy derived from ATP hydrolysis to move along or pump nucleic acid substrates. Single molecule manipulation has proved to be a powerful tool to investigate the mechanochemistry of these motors. Here we first describe the basic mechanical proper...

Descripción completa

Detalles Bibliográficos
Autores principales: Lionnet, Timothée, Dawid, Alexandre, Bigot, Sarah, Barre, François-Xavier, Saleh, Omar A., Heslot, François, Allemand, Jean-François, Bensimon, David, Croquette, Vincent
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1616950/
https://www.ncbi.nlm.nih.gov/pubmed/16935884
http://dx.doi.org/10.1093/nar/gkl451
_version_ 1782130494730665984
author Lionnet, Timothée
Dawid, Alexandre
Bigot, Sarah
Barre, François-Xavier
Saleh, Omar A.
Heslot, François
Allemand, Jean-François
Bensimon, David
Croquette, Vincent
author_facet Lionnet, Timothée
Dawid, Alexandre
Bigot, Sarah
Barre, François-Xavier
Saleh, Omar A.
Heslot, François
Allemand, Jean-François
Bensimon, David
Croquette, Vincent
author_sort Lionnet, Timothée
collection PubMed
description Helicases and translocases are proteins that use the energy derived from ATP hydrolysis to move along or pump nucleic acid substrates. Single molecule manipulation has proved to be a powerful tool to investigate the mechanochemistry of these motors. Here we first describe the basic mechanical properties of DNA unraveled by single molecule manipulation techniques. Then we demonstrate how the knowledge of these properties has been used to design single molecule assays to address the enzymatic mechanisms of different translocases. We report on four single molecule manipulation systems addressing the mechanism of different helicases using specifically designed DNA substrates: UvrD enzyme activity detection on a stretched nicked DNA molecule, HCV NS3 helicase unwinding of a RNA hairpin under tension, the observation of RecBCD helicase/nuclease forward and backward motion, and T7 gp4 helicase mediated opening of a synthetic DNA replication fork. We then discuss experiments on two dsDNA translocases: the RuvAB motor studied on its natural substrate, the Holliday junction, and the chromosome-segregation motor FtsK, showing its unusual coupling to DNA supercoiling.
format Text
id pubmed-1616950
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-16169502006-10-27 DNA mechanics as a tool to probe helicase and translocase activity Lionnet, Timothée Dawid, Alexandre Bigot, Sarah Barre, François-Xavier Saleh, Omar A. Heslot, François Allemand, Jean-François Bensimon, David Croquette, Vincent Nucleic Acids Res Survey and Summary Helicases and translocases are proteins that use the energy derived from ATP hydrolysis to move along or pump nucleic acid substrates. Single molecule manipulation has proved to be a powerful tool to investigate the mechanochemistry of these motors. Here we first describe the basic mechanical properties of DNA unraveled by single molecule manipulation techniques. Then we demonstrate how the knowledge of these properties has been used to design single molecule assays to address the enzymatic mechanisms of different translocases. We report on four single molecule manipulation systems addressing the mechanism of different helicases using specifically designed DNA substrates: UvrD enzyme activity detection on a stretched nicked DNA molecule, HCV NS3 helicase unwinding of a RNA hairpin under tension, the observation of RecBCD helicase/nuclease forward and backward motion, and T7 gp4 helicase mediated opening of a synthetic DNA replication fork. We then discuss experiments on two dsDNA translocases: the RuvAB motor studied on its natural substrate, the Holliday junction, and the chromosome-segregation motor FtsK, showing its unusual coupling to DNA supercoiling. Oxford University Press 2006-09 2006-08-25 /pmc/articles/PMC1616950/ /pubmed/16935884 http://dx.doi.org/10.1093/nar/gkl451 Text en © 2006 The Author(s)
spellingShingle Survey and Summary
Lionnet, Timothée
Dawid, Alexandre
Bigot, Sarah
Barre, François-Xavier
Saleh, Omar A.
Heslot, François
Allemand, Jean-François
Bensimon, David
Croquette, Vincent
DNA mechanics as a tool to probe helicase and translocase activity
title DNA mechanics as a tool to probe helicase and translocase activity
title_full DNA mechanics as a tool to probe helicase and translocase activity
title_fullStr DNA mechanics as a tool to probe helicase and translocase activity
title_full_unstemmed DNA mechanics as a tool to probe helicase and translocase activity
title_short DNA mechanics as a tool to probe helicase and translocase activity
title_sort dna mechanics as a tool to probe helicase and translocase activity
topic Survey and Summary
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1616950/
https://www.ncbi.nlm.nih.gov/pubmed/16935884
http://dx.doi.org/10.1093/nar/gkl451
work_keys_str_mv AT lionnettimothee dnamechanicsasatooltoprobehelicaseandtranslocaseactivity
AT dawidalexandre dnamechanicsasatooltoprobehelicaseandtranslocaseactivity
AT bigotsarah dnamechanicsasatooltoprobehelicaseandtranslocaseactivity
AT barrefrancoisxavier dnamechanicsasatooltoprobehelicaseandtranslocaseactivity
AT salehomara dnamechanicsasatooltoprobehelicaseandtranslocaseactivity
AT heslotfrancois dnamechanicsasatooltoprobehelicaseandtranslocaseactivity
AT allemandjeanfrancois dnamechanicsasatooltoprobehelicaseandtranslocaseactivity
AT bensimondavid dnamechanicsasatooltoprobehelicaseandtranslocaseactivity
AT croquettevincent dnamechanicsasatooltoprobehelicaseandtranslocaseactivity