Cargando…
CpGcluster: a distance-based algorithm for CpG-island detection
BACKGROUND: Despite their involvement in the regulation of gene expression and their importance as genomic markers for promoter prediction, no objective standard exists for defining CpG islands (CGIs), since all current approaches rely on a large parameter space formed by the thresholds of length, C...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1617122/ https://www.ncbi.nlm.nih.gov/pubmed/17038168 http://dx.doi.org/10.1186/1471-2105-7-446 |
_version_ | 1782130509106642944 |
---|---|
author | Hackenberg, Michael Previti, Christopher Luque-Escamilla, Pedro Luis Carpena, Pedro Martínez-Aroza, José Oliver, José L |
author_facet | Hackenberg, Michael Previti, Christopher Luque-Escamilla, Pedro Luis Carpena, Pedro Martínez-Aroza, José Oliver, José L |
author_sort | Hackenberg, Michael |
collection | PubMed |
description | BACKGROUND: Despite their involvement in the regulation of gene expression and their importance as genomic markers for promoter prediction, no objective standard exists for defining CpG islands (CGIs), since all current approaches rely on a large parameter space formed by the thresholds of length, CpG fraction and G+C content. RESULTS: Given the higher frequency of CpG dinucleotides at CGIs, as compared to bulk DNA, the distance distributions between neighboring CpGs should differ for bulk and island CpGs. A new algorithm (CpGcluster) is presented, based on the physical distance between neighboring CpGs on the chromosome and able to predict directly clusters of CpGs, while not depending on the subjective criteria mentioned above. By assigning a p-value to each of these clusters, the most statistically significant ones can be predicted as CGIs. CpGcluster was benchmarked against five other CGI finders by using a test sequence set assembled from an experimental CGI library. CpGcluster reached the highest overall accuracy values, while showing the lowest rate of false-positive predictions. Since a minimum-length threshold is not required, CpGcluster can find short but fully functional CGIs usually missed by other algorithms. The CGIs predicted by CpGcluster present the lowest degree of overlap with Alu retrotransposons and, simultaneously, the highest overlap with vertebrate Phylogenetic Conserved Elements (PhastCons). CpGcluster's CGIs overlapping with the Transcription Start Site (TSS) show the highest statistical significance, as compared to the islands in other genome locations, thus qualifying CpGcluster as a valuable tool in discriminating functional CGIs from the remaining islands in the bulk genome. CONCLUSION: CpGcluster uses only integer arithmetic, thus being a fast and computationally efficient algorithm able to predict statistically significant clusters of CpG dinucleotides. Another outstanding feature is that all predicted CGIs start and end with a CpG dinucleotide, which should be appropriate for a genomic feature whose functionality is based precisely on CpG dinucleotides. The only search parameter in CpGcluster is the distance between two consecutive CpGs, in contrast to previous algorithms. Therefore, none of the main statistical properties of CpG islands (neither G+C content, CpG fraction nor length threshold) are needed as search parameters, which may lead to the high specificity and low overlap with spurious Alu elements observed for CpGcluster predictions. |
format | Text |
id | pubmed-1617122 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-16171222006-10-20 CpGcluster: a distance-based algorithm for CpG-island detection Hackenberg, Michael Previti, Christopher Luque-Escamilla, Pedro Luis Carpena, Pedro Martínez-Aroza, José Oliver, José L BMC Bioinformatics Research Article BACKGROUND: Despite their involvement in the regulation of gene expression and their importance as genomic markers for promoter prediction, no objective standard exists for defining CpG islands (CGIs), since all current approaches rely on a large parameter space formed by the thresholds of length, CpG fraction and G+C content. RESULTS: Given the higher frequency of CpG dinucleotides at CGIs, as compared to bulk DNA, the distance distributions between neighboring CpGs should differ for bulk and island CpGs. A new algorithm (CpGcluster) is presented, based on the physical distance between neighboring CpGs on the chromosome and able to predict directly clusters of CpGs, while not depending on the subjective criteria mentioned above. By assigning a p-value to each of these clusters, the most statistically significant ones can be predicted as CGIs. CpGcluster was benchmarked against five other CGI finders by using a test sequence set assembled from an experimental CGI library. CpGcluster reached the highest overall accuracy values, while showing the lowest rate of false-positive predictions. Since a minimum-length threshold is not required, CpGcluster can find short but fully functional CGIs usually missed by other algorithms. The CGIs predicted by CpGcluster present the lowest degree of overlap with Alu retrotransposons and, simultaneously, the highest overlap with vertebrate Phylogenetic Conserved Elements (PhastCons). CpGcluster's CGIs overlapping with the Transcription Start Site (TSS) show the highest statistical significance, as compared to the islands in other genome locations, thus qualifying CpGcluster as a valuable tool in discriminating functional CGIs from the remaining islands in the bulk genome. CONCLUSION: CpGcluster uses only integer arithmetic, thus being a fast and computationally efficient algorithm able to predict statistically significant clusters of CpG dinucleotides. Another outstanding feature is that all predicted CGIs start and end with a CpG dinucleotide, which should be appropriate for a genomic feature whose functionality is based precisely on CpG dinucleotides. The only search parameter in CpGcluster is the distance between two consecutive CpGs, in contrast to previous algorithms. Therefore, none of the main statistical properties of CpG islands (neither G+C content, CpG fraction nor length threshold) are needed as search parameters, which may lead to the high specificity and low overlap with spurious Alu elements observed for CpGcluster predictions. BioMed Central 2006-10-12 /pmc/articles/PMC1617122/ /pubmed/17038168 http://dx.doi.org/10.1186/1471-2105-7-446 Text en Copyright © 2006 Hackenberg et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Hackenberg, Michael Previti, Christopher Luque-Escamilla, Pedro Luis Carpena, Pedro Martínez-Aroza, José Oliver, José L CpGcluster: a distance-based algorithm for CpG-island detection |
title | CpGcluster: a distance-based algorithm for CpG-island detection |
title_full | CpGcluster: a distance-based algorithm for CpG-island detection |
title_fullStr | CpGcluster: a distance-based algorithm for CpG-island detection |
title_full_unstemmed | CpGcluster: a distance-based algorithm for CpG-island detection |
title_short | CpGcluster: a distance-based algorithm for CpG-island detection |
title_sort | cpgcluster: a distance-based algorithm for cpg-island detection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1617122/ https://www.ncbi.nlm.nih.gov/pubmed/17038168 http://dx.doi.org/10.1186/1471-2105-7-446 |
work_keys_str_mv | AT hackenbergmichael cpgclusteradistancebasedalgorithmforcpgislanddetection AT previtichristopher cpgclusteradistancebasedalgorithmforcpgislanddetection AT luqueescamillapedroluis cpgclusteradistancebasedalgorithmforcpgislanddetection AT carpenapedro cpgclusteradistancebasedalgorithmforcpgislanddetection AT martinezarozajose cpgclusteradistancebasedalgorithmforcpgislanddetection AT oliverjosel cpgclusteradistancebasedalgorithmforcpgislanddetection |