Cargando…
Feature selection using Haar wavelet power spectrum
BACKGROUND: Feature selection is an approach to overcome the 'curse of dimensionality' in complex researches like disease classification using microarrays. Statistical methods are utilized more in this domain. Most of them do not fit for a wide range of datasets. The transform oriented sig...
Autores principales: | Subramani, Prabakaran, Sahu, Rajendra, Verma, Shekhar |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618414/ https://www.ncbi.nlm.nih.gov/pubmed/17022808 http://dx.doi.org/10.1186/1471-2105-7-432 |
Ejemplares similares
-
Haar wavelets: with applications
por: Lepik, Ülo, et al.
Publicado: (2014) -
Bayesian Wavelet Shrinkage of the Haar-Fisz Transformed Wavelet Periodogram
por: Nason, Guy, et al.
Publicado: (2015) -
Nonlinear System Identification by Haar Wavelets
por: Śliwiński, Przemysław
Publicado: (2013) -
Coarse-graining and the Haar wavelet transform for multiscale analysis
por: Bosl, William J., et al.
Publicado: (2022) -
Combining Haar Wavelet and Karhunen Loeve Transforms for Medical Images Watermarking
por: Hajjaji, Mohamed Ali, et al.
Publicado: (2014)