Cargando…
Integrative missing value estimation for microarray data
BACKGROUND: Missing value estimation is an important preprocessing step in microarray analysis. Although several methods have been developed to solve this problem, their performance is unsatisfactory for datasets with high rates of missing data, high measurement noise, or limited numbers of samples....
Autores principales: | Hu, Jianjun, Li, Haifeng, Waterman, Michael S, Zhou, Xianghong Jasmine |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1622759/ https://www.ncbi.nlm.nih.gov/pubmed/17038176 http://dx.doi.org/10.1186/1471-2105-7-449 |
Ejemplares similares
-
Integrative disease classification based on cross-platform microarray data
por: Liu, Chun-Chi, et al.
Publicado: (2009) -
A hybrid imputation approach for microarray missing value estimation
por: Li, Huihui, et al.
Publicado: (2015) -
Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation
por: Li, Wenyuan, et al.
Publicado: (2011) -
Robust imputation method for missing values in microarray data
por: Yoon, Dankyu, et al.
Publicado: (2007) -
Gene Aging Nexus: a web database and data mining platform for microarray data on aging
por: Pan, Fei, et al.
Publicado: (2007)