Cargando…
SVRMHC prediction server for MHC-binding peptides
BACKGROUND: The binding between antigenic peptides (epitopes) and the MHC molecule is a key step in the cellular immune response. Accurate in silico prediction of epitope-MHC binding affinity can greatly expedite epitope screening by reducing costs and experimental effort. RESULTS: Recently, we demo...
Autores principales: | Wan, Ji, Liu, Wen, Xu, Qiqi, Ren, Yongliang, Flower, Darren R, Li, Tongbin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1626489/ https://www.ncbi.nlm.nih.gov/pubmed/17059589 http://dx.doi.org/10.1186/1471-2105-7-463 |
Ejemplares similares
-
Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models
por: Liu, Wen, et al.
Publicado: (2006) -
SVMHC: a server for prediction of MHC-binding peptides
por: Dönnes, Pierre, et al.
Publicado: (2006) -
MHCSeqNet: a deep neural network model for universal MHC binding prediction
por: Phloyphisut, Poomarin, et al.
Publicado: (2019) -
Predicting Class II MHC-Peptide binding: a kernel based approach using similarity scores
por: Salomon, Jesper, et al.
Publicado: (2006) -
NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets
por: Nielsen, Morten, et al.
Publicado: (2016)