Cargando…
Identifying geographic areas with high disease rates: when do confidence intervals for rates and a disease cluster detection method agree?
BACKGROUND: Geographic regions are often routinely monitored to identify areas with excess cases of disease. Further epidemiological investigations can be targeted to areas with higher disease rates than expected. Surveillance strategies typically include the calculation of sub-regional rates, and t...
Autor principal: | Rosychuk, Rhonda J |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1630694/ https://www.ncbi.nlm.nih.gov/pubmed/17049097 http://dx.doi.org/10.1186/1476-072X-5-46 |
Ejemplares similares
-
Confidence intervals for rate ratios between geographic units
por: Zhu, Li, et al.
Publicado: (2016) -
Adaptations for finding irregularly shaped disease clusters
por: Yiannakoulias, Nikolaos, et al.
Publicado: (2007) -
An exact test to detect geographic aggregations of events
por: Rosychuk, Rhonda J, et al.
Publicado: (2010) -
Spatial event cluster detection using an approximate normal distribution
por: Torabi, Mahmoud, et al.
Publicado: (2008) -
Comparing geographic area-based and classical population-based incidence and prevalence rates, and their confidence intervals
por: Chen, Ding-Geng
Publicado: (2017)