Cargando…
Building multiclass classifiers for remote homology detection and fold recognition
BACKGROUND: Protein remote homology detection and fold recognition are central problems in computational biology. Supervised learning algorithms based on support vector machines are currently one of the most effective methods for solving these problems. These methods are primarily used to solve bina...
Autores principales: | Rangwala, Huzefa, Karypis, George |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635067/ https://www.ncbi.nlm.nih.gov/pubmed/17042943 http://dx.doi.org/10.1186/1471-2105-7-455 |
Ejemplares similares
-
svmPRAT: SVM-based Protein Residue Annotation Toolkit
por: Rangwala, Huzefa, et al.
Publicado: (2009) -
multiclassPairs: an R package to train multiclass pair-based classifier
por: Marzouka, Nour-Al-Dain, et al.
Publicado: (2021) -
An Ensemble-Based Multiclass Classifier for Intrusion Detection Using Internet of Things
por: Rani, Deepti, et al.
Publicado: (2022) -
Multiclass Classifier based Cardiovascular Condition Detection Using Smartphone Mechanocardiography
por: Iftikhar, Zuhair, et al.
Publicado: (2018) -
Application of nonnegative matrix factorization to improve profile-profile alignment features for fold recognition and remote homolog detection
por: Jung, Inkyung, et al.
Publicado: (2008)