Cargando…
MUMMALS: multiple sequence alignment improved by using hidden Markov models with local structural information
We have developed MUMMALS, a program to construct multiple protein sequence alignment using probabilistic consistency. MUMMALS improves alignment quality by using pairwise alignment hidden Markov models (HMMs) with multiple match states that describe local structural information without exploiting e...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636350/ https://www.ncbi.nlm.nih.gov/pubmed/16936316 http://dx.doi.org/10.1093/nar/gkl514 |
_version_ | 1782130735987032064 |
---|---|
author | Pei, Jimin Grishin, Nick V. |
author_facet | Pei, Jimin Grishin, Nick V. |
author_sort | Pei, Jimin |
collection | PubMed |
description | We have developed MUMMALS, a program to construct multiple protein sequence alignment using probabilistic consistency. MUMMALS improves alignment quality by using pairwise alignment hidden Markov models (HMMs) with multiple match states that describe local structural information without exploiting explicit structure predictions. Parameters for such models have been estimated from a large library of structure-based alignments. We show that (i) on remote homologs, MUMMALS achieves statistically best accuracy among several leading aligners, such as ProbCons, MAFFT and MUSCLE, albeit the average improvement is small, in the order of several percent; (ii) a large collection (>10 000) of automatically computed pairwise structure alignments of divergent protein domains is superior to smaller but carefully curated datasets for estimation of alignment parameters and performance tests; (iii) reference-independent evaluation of alignment quality using sequence alignment-dependent structure superpositions correlates well with reference-dependent evaluation that compares sequence-based alignments to structure-based reference alignments. |
format | Text |
id | pubmed-1636350 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-16363502006-11-29 MUMMALS: multiple sequence alignment improved by using hidden Markov models with local structural information Pei, Jimin Grishin, Nick V. Nucleic Acids Res Computational Biology We have developed MUMMALS, a program to construct multiple protein sequence alignment using probabilistic consistency. MUMMALS improves alignment quality by using pairwise alignment hidden Markov models (HMMs) with multiple match states that describe local structural information without exploiting explicit structure predictions. Parameters for such models have been estimated from a large library of structure-based alignments. We show that (i) on remote homologs, MUMMALS achieves statistically best accuracy among several leading aligners, such as ProbCons, MAFFT and MUSCLE, albeit the average improvement is small, in the order of several percent; (ii) a large collection (>10 000) of automatically computed pairwise structure alignments of divergent protein domains is superior to smaller but carefully curated datasets for estimation of alignment parameters and performance tests; (iii) reference-independent evaluation of alignment quality using sequence alignment-dependent structure superpositions correlates well with reference-dependent evaluation that compares sequence-based alignments to structure-based reference alignments. Oxford University Press 2006-09 2006-08-26 /pmc/articles/PMC1636350/ /pubmed/16936316 http://dx.doi.org/10.1093/nar/gkl514 Text en © 2006 The Author(s) |
spellingShingle | Computational Biology Pei, Jimin Grishin, Nick V. MUMMALS: multiple sequence alignment improved by using hidden Markov models with local structural information |
title | MUMMALS: multiple sequence alignment improved by using hidden Markov models with local structural information |
title_full | MUMMALS: multiple sequence alignment improved by using hidden Markov models with local structural information |
title_fullStr | MUMMALS: multiple sequence alignment improved by using hidden Markov models with local structural information |
title_full_unstemmed | MUMMALS: multiple sequence alignment improved by using hidden Markov models with local structural information |
title_short | MUMMALS: multiple sequence alignment improved by using hidden Markov models with local structural information |
title_sort | mummals: multiple sequence alignment improved by using hidden markov models with local structural information |
topic | Computational Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636350/ https://www.ncbi.nlm.nih.gov/pubmed/16936316 http://dx.doi.org/10.1093/nar/gkl514 |
work_keys_str_mv | AT peijimin mummalsmultiplesequencealignmentimprovedbyusinghiddenmarkovmodelswithlocalstructuralinformation AT grishinnickv mummalsmultiplesequencealignmentimprovedbyusinghiddenmarkovmodelswithlocalstructuralinformation |