Cargando…
Automating Genomic Data Mining via a Sequence-based Matrix Format and Associative Rule Set
There is an enormous amount of information encoded in each genome – enough to create living, responsive and adaptive organisms. Raw sequence data alone is not enough to understand function, mechanisms or interactions. Changes in a single base pair can lead to disease, such as sickle-cell anemia, whi...
Autores principales: | Wren, Jonathan D, Johnson, David, Gruenwald, Le |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637034/ https://www.ncbi.nlm.nih.gov/pubmed/16026599 http://dx.doi.org/10.1186/1471-2105-6-S2-S2 |
Ejemplares similares
-
Characterizing nucleosome dynamics from genomic and epigenetic information using rule induction learning
por: Le, Ngoc Tu, et al.
Publicado: (2009) -
Identification of temporal association rules from time-series microarray data sets
por: Nam, Hojung, et al.
Publicado: (2009) -
Using association rules mining to explore pattern of Chinese medicinal formulae (prescription) in treating and preventing breast cancer recurrence and metastasis
por: He, Yanhua, et al.
Publicado: (2012) -
Rule-based knowledge aggregation for large-scale protein sequence analysis of influenza A viruses
por: Miotto, Olivo, et al.
Publicado: (2008) -
Data mining of the GAW14 simulated data using rough set theory and tree-based methods
por: Wei, Liang-Ying, et al.
Publicado: (2005)